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Spatial Structure of Screening Propagators in Hot QCD
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%e use numerical simulations to study the spatial structure of a quark and an antiquark in the
imaginary-time excitations which mediate the Debye screening of color singlet sources in the high-
temperature phase of QCD. We find that these correlation functions are very similar to the zero-
temperature wave functions of the corresponding particles. This result contrasts with results on the p
and nucleon screening lengths for these sources, which are well described by a gas of free or weakly in-

teracting quarks.

PACS numbers: 12.38.Gc, 12.38.Mh

There is strong evidence that at high temperatures
QCD enters a regime where the spontaneous breaking of
chiral symmetry seen at low temperatures disappears, and

chiral symmetry is only slightly broken by the small

quark masses. Symmetry restoration could happen either
because QCD has become a theory of free or nearly free
quarks or because chiral symmetry is realized through
the parity doubling of color singlet hadronic modes.
Much of the evidence for chiral symmetry restoration
comes from the study of the spatial screening of color
singlet hadronic sources. Operationally these studies are
identical to the standard computation of the hadron spec-
trum on the lattice, except that the simulation is done at
high temperature, so the size of the lattice in the Euclide-
an time direction is small, and the propagators are mea-
sured in the spatial direction [I]. Parity doubling is

clearly seen in these propagators —the pion and a screen-
ing lengths become equal, as do the p and a~ and the nu-

cleon and its parity partner. Of course, this behavior
would be seen in a theory of free quarks as well as in a
theory of color singlet excitations.

It has recently been emphasized that the screening
masses of the p and a~ propagators are remarkably close
to t~ice the lowest Matsubara frequency, or twice the en-

ergy of a low mass free quark. Moreover, the agreement
is improved when finite lattice corrections are incorporat-
ed into the calculation of the Matsubara frequency [2].
Also, the nucleon screening length is reasonably close to 3
times the Matsubara frequency. However, the pion-
sigma screening length is lower than twice the Matsubara
frequency. These results have suggested models of high-
temperature QCD in which the pion and a are considered
to be composite particles but the excitations with the
quantum numbers of the p and nucleon consist of two or
three weakly interacting quarks, respectively [3]. In this
Letter we report on a study of the spatial structure of the
screening of color singlet sources, with results that appear

to be in conflict with models of screening by two or three
free or weakly interacting quarks.

Wave functions of hadrons, or at least the valence

quark components of hadrons, can be calculated in lattice
simulations by evaluating the quark and antiquark propa-
gators from some source at an initial Euclidean time to
spatially separated points at a later Euclidean time [4].
To get a nonzero result this calculation must either be
done in a fixed gauge such as the lattice Coulomb gauge
or the propagators must be parallel transported to a com-
mon point. In this work we use the Coulomb gauge.
Thus we evaluate (for a meson)

y(x) a:g((t)(t =0)q(y, z)l q(y+x, r )).

Here 6 is an operator that creates a quark and an anti-

quark at t =0 and I is the appropriate Dirac matrix for
the desired meson. The Euclidean time separation
should be made large enough so the result is independent

of r, apart from a normalization factor that decays at a
rate exp( mHr) dete—rmined by the hadron mass mH.

Because we are interested in chiral symmetry we use

Kogut-Susskind quarks, for which a U(l) subgroup of
the continuum chiral symmetry remains unbroken by the
nonzero lattice spacing. With Kogut-Susskind quarks the
mesons must be constructed from the appropriate com-
binations of propagators to different lattice sites. The
easiest way to handle this construction is to consider the
quark fields to be defined on a lattice of spacing 2a. Thus
we compute wave functions for spatial separations that
are multiples of 2a. For example, the y3 component of
the p-b l propagator at spatial separation 2e~ is given by

pvT, -(2ez) =g(P (y, r)( —I) 'p(y+2e2, r)), (2)

where p(y, t) =M '(U)$(t =0). Here M is the fermion

hopping matrix, S is the source, eq is the unit vector in

the y direction, and ( ) averages over gauge configurations
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U. These are just the conventional operators used in stag-
gered fermion mass spectrum calculations, except that
the quark is displaced by 2x, with x some lattice vector,
from the antiquark [5].

In practice, the sum over spatial lattice points, a convo-
lution, is accomplished by Fourier transforming the prop-
agator, squaring the magnitude of the result, Fourier
transforming back, and combining the results in each 2

site of the doubled lattice with the appropriate signs. In

these Fourier transforms each 2 block is treated as a sin-

gle variable, so for a lattice dimension of 16 we use an 8-
point transform.

We began by computing wave functions at low temper-
ature, using 16 &24 lattices stored in a previous hadron
spectrum calculation. These lattices had 6/g' =5.445
and mq =0.025, with two flavors of dynamical quarks.
This value of g is the crossover value to the high-
temperature regime for a lattice with six time slices and
the same quarks [6], so the present simulation at the
same g and m~ on a 16 x24X4 lattice is a simulation at
a temperature T=1.5T, , where T,. is the crossover tem-
perature to the high-temperature regime. We computed
propagators on 48 cold lattices, using a wall source at
r =0. Specifically, we set the source to one on the (0,0,0)
site of each 2 cube at t =0. With this source, the meson
wave functions for free quarks are constant —exactly in-

dependent of the quark-antiquark spatial separation at
any Euclidean time. The actual results for the pion and p
wave functions are pictured in Figs. 1 and 2. It can be
seen that the wave functions are reasonably well con-
tained in the box. As has been found in calculations with

Wilson quarks, the p is significantly larger than the pion.
The p wave function shows the y- p (f7) y), so th-e wave

function at separation (0,0,2) is not expected to equal the
wave function at separation (0,2,0). However, the wave

functions at (2,0,0) and (0,2,0) should be equal, and have

been averaged together here. In general, we have aver-

aged over all the lattice symmetries, including reflections

o O
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FIG. l. The pion wave function at T=O. We show the ]'-=

slice with x =0, at Euclidean time z =6. The wave function is

defined on the doubled lattice, so the 16' spatial lattice yielded
an 8 & 8 wave function.
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FIG. 2. The p wave function at T=O. We show the J-= slice
with x =0. This wave function is for the y- component of the p,
so it is not necessarily symmetric under y

of the spatial coordinates, interchanges of all the spatial
coordinates for the pion wave function, interchanges of
the x and J coordinates for the y- p, etc. , and t N, —t.

The p wave function shown in Fig. 2 is for the VT, or
p b~, propa-gator [5]. In this channel the source couples
more strongly to the p than to the b], and the b] is
heavier so its signal dies away compared to the p signal.
For the PV, or p-a~, channel and the SC, or n2-o, chan-
nel, the coupling to the positive-parity particle is relative-
ly larger, and it is necessary to separate the two parities.
We will present results for this in a later paper.

We then evaluated similar "wave functions" for screen-
ing propagators in a simulation at the same values of 6/g-
and mq, on a 16 X24X4 lattice. This involves inter-

changing z and t in with respect to the zero-temperature
wave-function calcul;ition. We measured propagators on
156 lattices in this run. In this case we measured the ex-
pectation values of quark and antiquark propagators
separated in the (x,y, t) plane for fixed =. Now
"Coulomb" gauge fixing acts on the x,y, t gauge links.
For the VT propagator we used only the y, and y, , corn-
ponents, with sign factors ( —

I )" and ( —
I )', respective-

ly, and for the PV propagator only the y- component,
with sign factor ( —

I ) '+'. The results are shown in Figs.
3 and 4, together with the low-temperature results. In

these figures we show the wave function versus the Eu-
clidean magnitude of the displacement x in y(x). [For
the high-temperature results we show correlators for the
quark and antiquark at the same Euclidean time t, but
separated in the x and y directions, using a source in the
(x, Jt) plane at z =0.] The striking fact is that the spa-
tial structure of the screening correlators closely resem-
bles the corresponding low-temperature wave functions.
We emphasize, and we have checked, that because the
source is uniform in x and y, for free quarks the result is

independent of the spatial separation. In other words, for
free quarks the wave function is a constant extending
over the entire lattice.

One can imagine several possibilities for the structure
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FIG. 3. The pion wave function at T=O and the screening
pion correlation function at T= 1.5T, We show all distances
on the lattice, with the functions normalized to 1 at the origin.
For the cold case we show results at two Euclidean times, to
show that the wave function is roughly independent of time, and

for the hot case we show two values of z. For the hot case we

show correlators for the quark and antiquark separated in the x
and y directions, but at the same value of t. The anomalously

high point indicated by the arrow at d =8 is the wave function
at (8,0,0), which is halfway around the periodic lattice with

L =16. Other points at similar distances, such as (6,4,4), are
lower. We have omitted all other points ~here any component
of the displacement was 8.

of these screening correlators: (1) Free quarks, perhaps
with a temperature-dependent mass. In this case tlv(x)
would be constant (the quarks would remain uncorrelated
in the coordinate x, as they were created). This case
seems to be ruled out. (2) Unbound quarks in an attrac-
tive screened potential. In this case we ~ould expect that
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FIG. 4. The p (VT) wave function at T=O and the screening
p correlation function. Here we plot only displacements with all
components less than L/2 =8.

y(x) would go to a constant at large x. The data limit
such behavior. (3) Bound quarks with an attractive
screened interaction. (4) Bound quarks with a confining
interaction.

From one point of view our result is not unexpected
[7]. Briefly, at high temperatures our lattice is short in

one direction, efIectively becoming three dimensional for
long distance observables. Thus we are measuring wave

functions of the zero-temperature states of QCD on the
compactified spatial manifold S x R . In the pure
Yang-Mills version of such a theory, large spatial Wilson

loops are expected to show an area law, and separated
point sources, a linearly rising potential. The very same
evidence is oAered for confinement at zero temperature,
suggesting that the compactified theory is also confining.
From this point of view it is not surprising that the
screening correlators we have measured should be similar
to the zero-temperature (four-dimensional) wave func-
tions. On the other hand, a number of previous results
are consistent with a picture of the high-temperature re-

gime as a plasma of weakly correlated quarks. Among
these are the dramatic rise in the Polyakov loop, corre-
sponding to a drop in the free energy of a color triplet test
charge, the similarity of the energy density to a gas of
free quarks and gluons, the increase in baryon number

susceptibility at the crossover [8), and the closeness of the

p and nucleon screening masses to 2 or 3 times the
Matsubara frequency. (Reference [9] discusses this
seeming paradox and a possible resolution. )

Finally, we are well aware that the screening propaga-
tors are not directly observable in experiment. To relate
these states to real-time finite-temperature plasma excita-
tions requires an analytic continuation about which
lattice simulations so far provide little information.
Nonetheless, because they are analytically related to
measurable quantities, they must be accommodated in

phenomenological models. A picture of screening by had-
ronl ike objects leaves unexplained the fact that the
screening mass of the p is close to twice the Matsubara
frequency. A coherent picture of high-temperature QCD
which accounts in detail for all of the simulation results
does not appear to be at hand.
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