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We present a systematic linear analysis of the perturbations induced by cosmic strings in cold dark

matter. We calculate the power spectrum and find that the strings produce a great deal of power on

small scales. %'e show that the perturbations on interesting scales are the result of many uncorrelated

string motions, which indicates a more "Gaussian" distribution than was previously supposed.

PACS numbers: 98.80.Cq, 98.60.Eg

Cosmic strings are widely considered to be possible
seeds for galaxies and larger-scale structure (see, for ex-

ample, [1-9] and other papers which have followed).
The idea is that a network of strings formed as defects in

a symmetry-breaking phase transition in the early
Universe. Such a network is expected to rapidly ap-
proach a "scaling solution" in which most of the proper-
ties of the network are independent of the initial details.
As the network evolves, the strings attract other matter
gravitationally. In this way perturbations are seeded
which can grow, via gravitational collapse, into galaxies
and larger-scale structure.

Veeraraghavan and Stebbins [10] have developed a for-
malism with which to study linear perturbations induced
in the surrounding matter by sources such as strings. Ne
have applied this formalism to a numerical realization of
a cosmic string network for the case of a Oat universe
with cold dark matter (CDM) and radiation. We de-

scribe the results in terms of a simple model which can be
easily extrapolated beyond the dynamical limitations of
the numerical work, and adapted to different pictures of
the string network. A complete discussion of this work

will appear in [11]. This Letter reports the main results,
which differ in major ways from earlier results based on

more heuristic approaches.
The degree to which string networks have been shown

to exhibit scaling behavior on cosmic time scales is still
controversial [12]. For this work, however, we will as-
sume that a realistic long-string network is well repre-
sented by a self-similar "scaling solution" [13] in which

the statistical properties of the network at a given time
can be described in terms of a single comoving scale ((t)
defined by

where pI is the energy density in a long string and p is
the mass per unit length of the string. (Except where
stated otherwise, we use units where c =6 =1.) The long
strings describe random walks of step size (, and also

have a mean separation of 0(g). The strings move

around at relativistic speeds, but the general properties of
the network at two different times are related by simply
rescaling ( appropriately. The degree to which the long
string is straight on scales smaller than ( is a subject of
current debate. One possibility is that small-scale struc-
ture contributes to a renormalization of p and a possible
decrease of the string's bulk velocity, but does not affect
the gross scaling properties.

The time evolution of the string network is a process of
dilution by the cosmological expansion and equilibration,
whereby the long strings are continually chopped up into
the statistically favored loops. As a result pI decreases,
and g grows, scaling roughly with the Hubble length,
RH—=a/a (where a is the cosmological scale factor). This
evolution is basically determined by the rate of loop pro-
duction.

In this paper we will calculate, using linear theory, the
overdensity, b(x) = [p(x) —p]/p, in matter today (p is the
average density). We may write b as the convolution of
the string "source" density with a suitable Green func-
tion, integrated over all time. The source density is a
component of the string stress-energy density: e+(x)
=-e~(x)+e,, (x). In Fourier space,

bl, =b(+4tr(l+z, q) T(k;rt')e+(k, rt')drt', (2)

where T is T2 from [10] and rt—=f'dt/a. Here b'g is the

initial perturbation, which "compensates" the string den-

sity, evolved to today. This compensation term is impor-
tant because on large scales it cancels the string density
and therefore suppresses the amplitude of inhomo-

geneities. The issue of compensation is a crucial one in

these calculations and it is discussed in [10,11,14]. In

[11]we conclude that the effect of b'( will be well approx-
imated if we make the substitution T Tl[l +(k,lk) ]
and drop bq from Eq. (2). This is essentially a long-

wavelength cutoA which sets in at wave number k, .
Thus modified, Eq. (2) can be squared and averaged

over directions in order to study P(k), the power spec-
trum:

(2n)'P(k)b"'(k —k') =16~'(I+z,„)', J T(k;g, )T(k;g, )(e (k,+g, )e+(k', g, ))dq, dg, .

The picture can be simplified by noting that although there are two time integrals, the only significant contributions
come from times when qi and qq are reasonably close. That is because the strings' configurations are uncorrelated when
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separated by a sufficiently long time. For large enough
values of t)~

—
ri2, (8+(k, ri~ )8+(k, ri2)) will be negligibly

small. As long as the correlation time of the strings is
small compared with the time over which T(k;rl) varies,
we can model P(k) by

P(k) =16+ (I+z„q) p „ iT(k;rl')i F(k;ri')dri', (4)

where

(2x) F(k;tl')8(k —k')
y+ce

(8+(k, rl')8~ (k', rl"))dr)" . (5)

The "structure function" F(k;ri) represents the power
spectrum of the coherent string motions. In order to rep-
resent a scaling string network, we write F(k;ri)
=P(k(/a). [For some of our calculations T does vary by
factors of the order of I over the string correlation time,
but we do not expect this to introduce major errors, other
than small changes in the normalization. )

We have chosen a form for P(kg/a) which is motivat-
ed by cosmic string physics [15]:

P(kg/a) =, P'Z ~,
2

I +2(kZ/a) 2

where the overbar indicates an energy-weighted average
over the string, P gives the (microscopic) velocity of the
string, Z is proportional to the surface density of the
wakes produced, and g (ee g) gives the curvature scale of
wakes. The form factor goes as k on scales smaller
than g/a which is characteristic of the 2D surfaces swept
out by the long strings, while for larger scales P has a
white-noise (k ) form characteristic of uncorrelated
pointlike objects. We show in [11] that with the ap-
propriate choice of parameters this model fits the Al-
brecht and Turok (AT) string network very well. Equa-
tion (6) does not include the effects of string loops which
we have found to be not extremely important and whose
contribution would differ widely between the different
simulations.

This form factor is appropriate for both smooth strings
and strings with very-small-scale structure which, if the
small-scale structure is not resolved, may be thought of as
one dimensional but with a renormalized string tension p„
and a macroscopic bulk velocity pb [16]. Using the re-
sults of [17],

completely specified once one fixes k„g, P Z, and g. We
consider three different models for these quantities: (I)
the AT model [k„=4m/rl and ((rl) given by Eq. (3.7) in

[13], P Z=0.5, and @=0.58$] which has been fitted to
the simulation in [13]which exhibits no small-scale struc-
ture, (2) the "X" (extreme) model (k„=2m/rl, ( g ari,
and P Z=0.5) which is close to the old picture of string
networks where the curvature scale of the strings is close
to the horizon, and (3) the "I" (intermediate) model
[k„2x/ri and g given by Eq. (3.7) in [13] but with

chopping efficiency c, =0.16, twice that for the AT mod-

el, P Z 1.2, and g 2g] which is motivated by the re-
sults of Bennett and Bouchet [19] and Allen and Shellard
[20]. Their simulations tend to show both larger (, due
to a greater chopping efficiency, and a larger curvature
scale g, at least partly due to the small-scale structure on
their strings. For the AT, I, and X models (/ari varies
from 0.066, 0.140, and 1 in the radiation era to 0.121,
0.185, and I in the matter era. The X model gives both g
and g their largest plausible value which is much larger
than any of the recent simulations suggest. Since the
number of wakes in the X model is minimized, the prom-
inence of individual wakes will be maximized.

We plot 4x(k/22r) P(A, ) for the three models in Fig.
I along with the same curve for Harrison-Zel'dovich
(HZ) perturbations (as produced in inflationary cosmolo-
gies) with CDM [21] (dot-dashed curve). All the curves
have the standard normalization of unit variance of
bm/m in an R 8h ' Mpc sphere, chosen so the cluster-
ing of CDM reproduces the observed galaxy clustering
[h=Ho/(100 km/secMpc)]. Thus p is different for each
curve (see Table I). The slope of all the curves is A, for
large lt, , because the scaling properties of the strings in-

duce the same behavior in P(A, ) as does the scaling prop-
erties of the HZ perturbations. The transition between
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P (I P2) I/2 2 2

P (I —P2) '~2 21jb PP,
(7)

For smooth strings P Z —0.5. For wiggly strings we use

the results of [18] to estimate P Z-1.2 in the radiation
era and less in the matter era. For this estimate we have
taken pb =0.3 in Eq. (7) which we think is a reasonable
guess of the typical velocity averaged over the small-scale
structure and not over the large-scale curvature.

For our calculations, the nature of the cosmic strings is

—1 0 1 2 3
log(X/Mpc)

FIG. I. The logarithm of 4~(A/2z) 3P(A, ) vs log(k) for
inflation (dot-dashed), AT strings (short-dashed), X strings
(solid), and I strings (long-dashed). We use h tto I, nor-
malized at 8h ' Mpc.
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TABLE I. Fit parameters (a' s) for Eq. (8) when k is in units
of h /Mpc. The values of p are fixed by the standard 8h
M pc normalization.

Ql Qp Q3 Q4 Qq

10 p
h=l h =05

AT 1.77 2.30 1.80 0.520 0.001 27 4.5
X 0.98 12.0 6.2 2. 11 0.000345 16
I 6.80 4.70 4.40 1.55 0.000455 1.8

6.2
27

2.8

(w(kR)~ P(k)4nk dk,
R

radiation and matter domination exposes the differences
between strings and HZ perturbations. Smaller wave-
lengths, which enter the horizon in the radiation era, have
much more power in the string spectrum compared with
the HZ spectrum.

The integration over conformal time in Eq. (4) covers
the entire history of a given scale. At early enough times,
any given scale is far outside the Hubble radius and is un-
perturbed. Around the time when RH [which always
grows faster than a(t)] catches up with the comoving
scale A„ the string perturbations become uncompensated
and P(li, ) starts to receive significant contributions. The
power continues to receive contributions at all later times,
but perturbations produced later have less time to grow,
and this can diminish their relative contribution to P(A, ).

One can fit the curves in Fig. 1 to about 10% accuracy
with the function of the form

4trk 4h 4a('p'

I+(azk)+(a3k) +(a4k) I+(as/k)

(s)
if one takes the a's given in Table I. The last factor in

Eq. (8) represents a deviation from k behavior at very
large wavelengths, which occurs because the very largest
scales have just entered the horizon and have yet to re-
ceive their full complement of perturbations.

As originally pointed out by Vachaspati [22], it is
tempting to think that individual string wakes could be
responsible for the sheetlike structures in the distribution
of galaxies observed on scales of around 50h ' Mpc [23].
One way this could occur is if the wakes produced when
the strings had a comoving coherence scale of -50h
Mpc contributed significantly to the overdensity sur-
rounding that wake when averaged over the galaxy scale
(-h ' Mpc). Indeed for a wake to produce a distinc-
tive sheetlike overdensity one needs a single coherent
string motion to produce the dominant perturbation on a
range of scales, so that the single wake dominates inside
many different size volumes which contain the wake.
This allows the "sheet" to look both thin in one direction
and wide in the other two. The variance of bm/m in a
sphere of radius R averaged over space is given by

where w(x) =3[sin(x) —xcos(x)]/x . The same sphere
if centered on a planar wake will receive a contribution
bm/m=

& tkR ' from that wake. Here h(rt) is the dis-
tance out to which matter has been accreted, which de-
pends on the time rt when the wake was produced, and is
proportional to Z. (We take Z= 1 for AT and X strings,
and Z=2.5 for I strings. ) For a wake to be sheetlike
bm/m must be comparable to or exceed the rms bm/m on
a range of scales. As we shall see this is probably not the
case.

In Fig. 2 the curved lines show the rms bm/m vs R.
The straight lines show the contribution of an individual
wake to the bm/m in a sphere centered on that wake.
For each of our three models we calculate the single-
string bm/m for wakes produced at two different times.
One time corresponds to when g-50h Mpc and the
other is chosen so that 6 takes on its maximum value,
1.5X10 Zp Mpc, which occurs at about z =1.7z,„[24].
We terminate the single-wake lines at R g/a, the curva-
ture scale of the wakes. For the AT strings the lines are
always well below the rms curve. For I strings the lines
are close to the rms curve for large R, but fall away with
decreasing R on scales where the rms curve is steeper
than R '. The single-wake lines always lie above the
rms for the X strings.

We can use Fig. 2 to make two points. First, the
g 50h Mpc wakes do not give a dominant contribu-
tion to bm/m on scales relevant to galaxy formation
(R-1 Mpc). The maximal wakes, for example, have a
larger bm/m, and there are many more of them, since
their mean separation is much smaller.

Second, in neither the AT nor the I model do any of
the wakes meet the aforementioned criteria to produce in-

0

0 1 2 3

log�(R/Mpc)

FIG. 2. The value of bm/m in a hall of radius R, vs R for AT
strings (short-dashed), X strings (solid), and I strings (long-
dashed). The curves give the rms bm/m, and the straight lines
give bm/m in a ball centered on a single wake. We use
h =Op= 1, normalized at 8h ' Mpc. The line for the AT max-
imal wake, with g=0.4h Mpc, lies on top of the line for the I

maximal wake and has been removed for clarity.
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itially sheetlike perturbations. Thus sheetlike density
patterns are not imprinted by the strings. This does not
mean that some sort of strong biasing mechanism could
not lead to a sheetlike distribution of galaxies, nor that
when a given scale begins to go nonlinear that it will not
produce sheetlike Zel'dovich pancakes. These pancakes
are a property of gravitational clustering and not evi-
dence for "stringiness. " Also, since on all scales many
wakes are required to produce the rms, we expect the
linear density field to be fairly Gaussian. If something
very diA'erent from any of the simulations, such as the X
model, were really how string networks behaved, then a
less-Gaussian, more-sheetlike initial density field would
be expected.

In conclusion, our picture of perturbations from cosmic
strings in CDM has been significantly changed by a more
systematic analysis. The perturbations on scales less than
10h ' Mpc are not dominated by a few wakes with
coherence length greater than 10h ' Mpc, but rather by
much smaller wakes. Galaxy-sized inhomogeneities will

not be confined to sheets with a coherence scale very
much greater than the galactic scale. The resulting spec-
trum has much more power on small scales, as compared
with the Harrison-Zel'dovich spectrum, and also as corn-
pared with earlier pictures of perturbations from strings.
The contributions of many string motions with many
different coherence scales make it unlikely that distinctive
"stringy" features will show up strongly in the matter dis-
tribution today.

Even given the uncertainties in the relation between the
linear perturbation spectrum and the distribution of lumi-
nous matter, the string spectrum does not look good.
When one normalizes at 8h ' Mpc the amplitude on

large scales is smaller than is predicted by inflation.
Current thinking (e.g. , Ref. [25]) suggests that the
inflationary CDM spectrum is in trouble for lack of
power on large scales. The string-induced CDM spec-
trum should have even greater problems.
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