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We show that the geometrical (Berry) phases discovered in Hamiltonian systems can also be defined
as resulting from parallel transportation of vectors for nonlinear dissipative systems with cyclic attrac-
tors. If the nonlinear dissipative systems possess a certain kind of asymptotic solution defined in this
Letter, the phase and amplitude accumulation of a geometrical type can be defined. Detuned one- and
two-photon lasers showing periodic intensity pulsations are taken as examples of such systems.
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Since the remarkable discovery by Berry [1] of the
quite general existence of an observable phase accumula-
tion in the wave function of a quantum-mechanical sys-
tem with an adiabatically changing Hamiltonian, the un-
derstanding of this phase has gained greatly in both its
deepness and its extensiveness. The connection of this
phase with the parallel transportation of vectors along a
curve was first realized by Simon [2], who supplied
mathematical structure for the later generalization to
various cases. The restriction to adiabaticity was lifted
by Aharonov and Anandan [3] by removing the time in-
tegral of the expectation of the Hamiltonian as a dynami-
cal phase from the wave functions. The evolution de-
scribed by the resulting wave functions then defines a nat-
ural connection for any cyclic evolution of a quantum sys-
tem. This idea was recently used by Samuel and Bhan-
dari [4] to get rid of the restriction to the Hamiltonian
system. These authors identified the real part of the ex-
pectation value of the linear operator as the dynamical
frequency and established a natural connection for the
linear nonunitary evolution. The restriction to cyclic
motion was also removed by these authors [4]. Some
later authors [5] treated the linear non-Hermitian sys-
tems by a more elegant approach using the technique of
the biorthogonal set of state vectors. A “complex phase”
was introduced by these authors. The phase has also
been extensively studied by Chiao and co-workers [6] ex-
perimentally as well as theoretically. By assuming the
existence of a global gauge invariance and charge conser-
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vation, Garrison and Chiao [6(b)] extended this phase
concept for the multicomponent gauge-field theory with
nonlinear equations derived from a Lagrangian. A subse-
quent Comment of Anandan pointed out that the gauge
invariance is not necessary [7] for a one-component sys-
tem with an overall amplitude accumulation. The case of
multicomponent systems with gauge invariance was also
considered there [7] to define a nonadiabatic and non-
Abelian phase for nonlinear systems. In this Letter we
show that neither unitariness of the evolution nor lineari-
ty of the systems is necessary for the existence of this
geometrical phase in a multicomponent system. The con-
cept of the geometrical phase can be extended to a quite
different context, namely, dissipative nonlinear systems,
where attractors exist. The essential requirement is that
the considered system possesses a kind of cyclic solution
for t— oo, If such asymptotic solutions (cyclic attractor)
exist, the geometrical phase can be defined for a class of
dissipative dynamical systems. The evolution of the sys-
tem along such attractors will define a parallel transpor-
tation of vectors in some space. At the same time the
concept of the geometrical amplitude accumulation is
naturally introduced for a nonlinear system since we are
dealing with dissipative systems where no conservation
law guarantees the invariance of the amplitude during the
parallel transportation of the vectors. This generalizes
the complex phase defined in [5]. Detuned one- and
two-photon lasers displaying periodic intensity pulsations
will be taken as examples from laser physics.
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Consider a dynamical system described by the follow-
ing ordinary differential equations:

) =|F(|¥))), (D

where |W)=C(y,,y>, ...,w,) is the vector describing the
states of the system in phase space and |F(|¥))) is a non-
linear vector-valued function |¥), which defines the evo-
lution in the phase space. In general, |F(|¥))) is also a
function of the externally controllable parameters, e.g.,
the pumping in lasers.

We define now a diagonal matrix, 7 (¢(1)), whose ele-
ments are given by (explia;9(1)], expliayo(2)], .. .,
explia,9(¢)]), where a;’s are real numbers and ¢(¢) is a
real function. Suppose that for certain sets of parameters
there exists a kind of asymptotically stable solution of Eq.
(1), such that, for certain initial conditions and for
t — oo, the following relation holds:

W +T)=T(=5¢)|¥()), 2)

where 8¢ is a real quantity [8]. In the following our dis-
cussion will be based on this kind of solution and the evo-
lution of the system (1) will correspondingly be restricted
to a certain set of parameters, for which the solutions of
type (2) exist. Such motions described by |¥) satisfying
(2) are defined as cyclic attractors in this Letter. Obvi-
ously this is a generalization of the cyclic motion used by
the earlier authors [3,4], where T is unity. Correspond-
ingly, we define a periodic motion (limit-cycle solution)
through

W) =T ) |wQ)). (3)

In order to ensure the periodicity |¥(t+7))=|¥ (1)) we
require the relation

TG+T)—9¢(t)—6¢)=T()=1I 4)
or the relation
o(t+T)—9(t)=6¢, (3)

where [ is the identity matrix. Denoting the space
formed by all cyclic vectors |¥) as space N (total space),
and that formed by periodic vector |¥) as R (base
space), we can also consider the relation (3) as a map-
ping (denoted as IT:|¥)— |¥)) from the space N to the
so-called ray space . Obviously a cyclic motion draws a
closed curve in the ray space %, whereas such a closed
curve in R generally corresponds to an open curve in N.
Roughly speaking, this is the origin of the phenomenon of
anholonomy.

To proceed further we define a diagonal matrix A,
whose elements are given by (a;,a,, . .. ,a,). We form a
new vector

1
|d) =exp [Af xAt')dt'] |w), (6)
where a dynamical contribution y, is removed from the
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original vector and is defined by

(w|F(w))) .
W=——F""=pt , 7
xd (w[A[w) T )
which is a complex quantity with its imaginary part
defining a dynamical frequency and its real part a
dynamical amplitude. Obviously the new vector is no
longer cyclic in the sense of (2), because |®(r)) accumu-

lates itself both in amplitude and in phase. From (2),
(6), and (7) we obtain

t+T
loG+T)=T [—6¢—ij: xa(t)dt [|®(), (8)

which defines total phase and amplitude accumulations in
a period 7.

A corresponding periodical vector can be defined
through

B =T G|, ©)
where
50 = [ v +ira@dr' (10)
The periodicity of |®(z)) requires
t+T t+T
S v =so— [ wu0dr. (n

Now our total space N’ is spanned by |®) and the base
space ' by |®). The structure group is T (#(s)), which
does not form a unitary group. A fiber consists of all vec-
tors of the space V' which correspond to a vector in the
base space through (9). The evolution of the system over
one period draws a closed curve in the base space 7',
whereas the lifting of the such a closed curve up to the to-
tal space is generally open. In our present case it has
both phase and amplitude anholonomy. To show that
this lifting is horizontal we consider the evolution in these
new spaces N' and R'.

Using (1) we can derive the following evolution equa-
tions:

[0 =za Al +exp A gaar [l#qw0 . )

|®) =i () A|D)+T (5(1))|d) . (13)

The contraction of the first equation with (®|T *(4)

x T (¢) under consideration of (7) leads to
(DT *(@)T(9)|d) =0, (14)

whereas the contraction of the second equation with (|
leads to

(DD

=4 (15)
(D|A|D) ¢
After integration of (15) over one period we have
(+T +T (5|q">) }
= — dtRey———— 1, (16)
S == {(cb!Alcb)
60 =06¢,+ ¢4 , a7
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where 8¢, is the geometrical phase given by

+7 (@%) }
6p, = dtimy———1.
it j: {((DIAId))
6¢4 is the integral of the dynamical frequency over one
period:

+T
5¢,,=j:’ wgdr . (19)

Formulas (14) and (15) constitute the main result of
this Letter. It is useful to interpret the above results us-
ing the language of differential geometry. Equation (13)
represents a decomposition of a tangent vector into a
vertical (first term) and a horizontal (second term) part,
while Eq. (14) defines a connection, i.e., a horizontal
space being orthogonal to the vertical subspace. Further-
more, the path integral of (15) along the closed curve in
R'is a geometrical quantity, whose imaginary part given
by (18) is the geometrical phase. The real part given by
(16) corresponds to a geometrical amplitude accumula-
tion. As stated by (16), this geometrical amplitude accu-
mulation has the same magnitude as but opposite sign to
the dynamic part, as required by the cyclic relation (2).
From (17) we see that the whole phase accumulation is
given by the summation of a dynamical and a geometrical
part. For any cyclic evolution in the sense of (2) we can
define a |®) through (6) such that the actual evolution of
the system defines a parallel transportation of vectors in
the space WNV'. The projection of this evolution onto the
space ' will then generate a closed curve. The line in-
tegral along this closed curve gives the geometrical phase.
The geometrical properties of these formulas have been
discussed by many authors cited above. Our aim is then
to give some interesting application of the above results to
nonlinear dissipative systems with cyclic attractors.

As a first application we take the detuned single-
photon laser with running wave configuration and homo-
geneously broadened atomic lines, which was shown [9]
to be identical to the complex Lorenz equations. Using
the notations of [9] and denoting the electric-field ampli-
tude by X, a mixture of the field amplitude and the polar-
ization by Y, and the inversion by Z, the set of equations
is given by

(18)

X=—kX+kY, (20)
Y=—aY+(tr—-2)X, @n
Z=—bZ+ L+ (X*Y+XY*), (22)

where r=r|+ir;, a=1+ir,. ry is related to the pump-
ing. r2=(1 —k)A and A is the detuning between the cav-
ity and the atomic frequencies. b and k are the relaxa-
tion constants of the cavity and of the population inver-
sion scaled by the relaxation constant of the polarization,
respectively. The reference frequency is the cw frequency
so that any new frequency will be due to the pulsations of
the intensity. Here |¥) is a vector with three components

(X,Y,Z) and the a; are given by (a; =1, a;=1, a3=0).
From our earlier analysis [10] we know that this vector is
cyclic after the second threshold, when the intensity
shows periodic pulsations. Using formula (7) the dynam-
ical frequency is given by

—r| Y2+ Iml(r—Z — k) XY*]
|X[2+]Y|?

From this expression we see that wy =0 if there is no de-
tuning, because Y is then asymptotically real and r,=0.
We know that there is no phase accumulation for perfect-
ly tuned lasers in the domain of pulsation except for that
induced by the cw frequency. Therefore there is no
geometrical phase for the perfectly tuned. lasers. For the
case of detuning, the whole phase is given by [9]

o(1) = —kf’dt Im[Y exp(ip)]
X1 ’

Wy = — (23)

(24)

where x; =Xexp(i¢) is a real variable. The dynamical
phase is given by the integration of (23). The subtraction
of the dynamical part from the total phase gives the
geometrical phase. An example of these phases for the
detuned case is shown in Fig. 1.

Our second example is the detuned two-photon laser.
Denoting the electric-field amplitude by E, the polariza-
tion of the medium by P, and inversion by D, we can
write the equations [11]

E=(id —1)kE —2iPE* , (25)
P=—(id+1)P+iDE?, (26)
D=b(Dy—D)+2i[PE**—P*E?], 7

where d is the scaled detuning parameter between the
cavity and atomic frequencies and Dg denotes the pump-
ing rate. k and r have the same meaning as in the one-
photon laser. Again we take the cw frequency as the
reference frequency. It can be easily verified that a;’s are
now given by (a; =1, ay=2, a3=0). The Hopf bifurca-
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FIG. 1. The total phase (dashed line), dynamical phase (dot-
ted line), and geometrical phase (solid line) with respect to the
time 7 scaled by the relaxation constant for the polarization for
a detuned one-photon laser, where kK =4.0, =0.1, A=0.5, and
r =91.0.
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FIG. 2. The phases for a detuned two-photon laser with
k=03, b=0.05, d=0.1, and R=(Do—D)/D®=13.0,
where D@ is the stationary inversion. The meanings of the
different curves are the same as in Fig. 1.

tion of this set of equations was studied in [11] and there
exists a threshold for self-pulsing of the intensity. The
cyclicity of E and P as defined in (2) can be easily
verified in the parameter region of the periodic intensity
pulsations. The dynamical frequency can be calculated
from Eq. (7):

o, = dKIE[?=|P|*1 +Im{iDE *P* —2iPE*?
‘ |E]>+2] P2 '

Again we see wy =0 if d=0, because the polarization is
asymptotically imaginary in this case and the second term
in the numerator then vanishes. The geometrical phase is
therefore zero in this case as well. In the case of detuning
we can calculate the geometrical phase in a way similar
to that in the one-photon laser. The total phase is now
given by [11]

(28)

o(1) =f'dz[2 Re{PexpQig)} —kd] . (29)

The total, geometrical, and dynamical phases are shown
in Fig. 2.

From the applications of formula (18) to the above ex-
amples the relationship between the geometrical phase
and the whole phase accumulation becomes clearer. In
the earlier work [10] we expected an analogy between the
two and made some comparative study. Here we know
precisely that the whole phase also contains a dynamical
part which could not be anticipated by the earlier
method. But the fact still holds that the geometrical
phase is closely connected with detuning.

Finally we would like to mention the recent work of
Kepler and Kagan [12]. These authors studied the phase
in dissipative systems with explicit time-dependent pa-
rameters and required that these parameters change adia-
batically. We show in this Letter that autonomous dissi-
pative systems can generate a cyclic attractor on its own.
After the subtraction of a dynamical-like contribution the
evolution of the systems defines a parallel transportation
law along this attractor and results in an intrinsic geome-
trical phase. Neither the modulated external parameters
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nor the adiabaticity is necessary to define this phase for
dissipative systems.

To conclude, we have shown that the geometrical for-
malism for the parallel transportation of vectors (14) and
the geometrical phase expressed as a line integral (18)
hitherto formulated for Hamiltonian systems or linear
non-Hamiltonian systems can be suitably adapted to dis-
sipative systems showing cyclic attractors. At the same
time the concept of the geometrical amplitude accumula-
tion is naturally and generally introduced for nonlinear
dissipative systems, which generalizes the concept of the
complex phase introduced in [5]. Although the dynami-
cal and the geometrical amplitude accumulations exactly
cancel each other in our case, it would be interesting to
investigate the property of the geometrical part. This
Letter gives, on the one hand, a more general extension of
the existence of the geometrical phases and, on the other,
an important application to laser physics. Since it has
been claimed for a long time that the Berry phase is pure-
ly geometric, it will be very interesting to derive this
phase from a geometrical point of view for nonlinear dis-
sipative systems also. Furthermore, we believe that the
study of the geometrical structure of the evolution of the
dissipative dynamical systems is an interesting field in its
own right, where much work still needs to be done. We
hope that this work will stimulate more interest in apply-
ing such an approach to dynamical systems.

The authors thank T. Will for his helpful discussions
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