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A specific crystalline order, involving the Fibonacci series, had until now only been observed in plants
(phyllotaxis). Here, these patterns are obtained both in a physics laboratory experiment aud in a numer-
ical simulation. They arise from self-organization in an iterative process. They are selected depending
on only one parameter describing the successive appearance of new elements, and on initial conditions.
The ordering is explained as due to the system s trend to avoid rational (periodic) organization, thus
leading to a convergence towards the golden mean.

PACS numbers: 87. l0.+e, 05.45.+b, 61.50.Cj

The elements of a plant (leaves, sepals, florets, etc. )
form very regular lattices, with a crystallinelike order. In
the most common arrangement (e.g. , on a sunflower head
or a pinecone), the eye is attracted to conspicuous spirals
(the parastichies) linking each element to its nearest
neighbors. The whole surface is covered with a number i
of parallel spirals running in one direction, and j in the
other. The most striking feature is that (i,j) are nearly
always two consecutive numbers of the Fibonacci series,
[F~] =[1,1,2, 3,5, 8, 13,21,34, . . .] where each new term is

the sum of the two preceding ones. Early works [1-3]
showed that such patterns resulted from the successive
appearance of the elements on a uniquely tightly wound

spiral, called the generative spira/. The basic quantity is
then the divergence y which is the angle between the ra-
dial directions of two consecutive elements. Measure-
ments [3] of divergences on mature plants showed that
they were surprisingly close to the golden section:
=2n(I —r ) = 137.5', where r =(—

I +J5)/2 is the
golden mean.

A basic hypothesis is that these phyllotactic patterns
result from the conditions of appearance of the primordia
near the tip of the growing shoots (for reviews see Refs.
[4] and [5]). The stem tips (the apical meristems) have
axisymmetric profiles [Fig. 1(a)]. The summit is occu-
pied by a stable region: the apex. The primordia (which
will evolve into leaves, petals, stamens, florets, etc. ) are
first visible as small protrusions at the periphery of the
apex. In the reference frame of the tip, due to the
growth, the existing primordia are advected away from
the apex while new ones continue to be formed [6]. In

botany, it was suggested [7] that a new primordium ap-
pears with a periodicity T near the tip in the largest gap
left between the previous primordia and the apex.

Altogether this forms an iterative process which we

wish to investigate as a dynamical system. To implement
a laboratory experiment and a numerical simulation, we

retained from botany the following characteristics: Iden-
tical elements are generated with a periodicity T at a
given radius Ro from a center in a plane surface [8].
They are radially advected at velocity Vo, and there is a
repulsive interaction between them (so that the new ele-
ment will appear as far as possible from the preceding
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FIG. l. (a) Sketch of the growth in plants. (b) Sketch of
the experimental apparatus.

ones, i.e., in the largest available place). The results can
be interpreted using only one adimensional parameter
G = VoT/Ro.

The experimental system [Fig. 1(b)] consists of a hor-
izontal dish filled with silicone oil and placed in a vertical
magnetic field H(r) created by two coils near the
Helmholtz position. Drops of ferrofluid of equal volume
(i =10 mm ) fall with a tunable periodicity T at the
center of the cell. The drops are polarized by the field
and form small magnetic dipoles, which repel each other
with a force proportional to d (where d is their dis-
tance). These dipoles are advected by a radial gradient
of the magnetic field (from 2.4&&10 A/m at the center to
2.48X10 A/m at the border of the dish), their velocity
V(r) being limited by the viscous friction of the oil. In

order to model the apex, the dish has a small truncated
cone at its center, so that the drop introduced at its tip
quickly falls to its periphery. 6 can be tuned by changing
either the periodicity T or the gradient of H (controlling
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Vo). The drops ultimately fall into a ditch at the peri-
phery. We used an ionic ferrofluid in nitric acid [9] with

a volumic concentration of 8%. The magnetization was
M =gH with g 0.493.

The experiment shows that the final steady pattern de-
pends crucially on G. For a strong advection [Fig. 2(a),
G = I], each new drop is repelled only by the previous one
so that successive drops move away in opposite directions
(this mode with y=l80' is called the alternate or dis-

tichous mode in botany). Below a threshold G~ i each
new drop is repelled by the two previous ones and cannot
remain in line with them. When the third drop slides to
one of either side of this line there is a symmetry break-
ing into a chiral mode which selects once and for all the
direction of rotation of the generative spiral. A steady re-
gime is reached with a constant divergence y [in Fig.
2(b), +=150 and i =1, j=2]. For smaller G the new

drop becomes sensitive to the interaction of three or more
previous ones, and the divergence gets nearer to @. In
Fig. 2(c) for G=0.15, m=139 and the spiral Fibonacci
mode is i =3, j=5.

Our numerical simulations are based on similar physi-
cal hypotheses. In a plane, the locus of appearance of
elements is a circle C of radius Ro centered at the origin.
These elements are punctual particles, each generating a
repulsive energy E(d), where d is the distance to the par-
ticle. Several energy laws were used, I/d, I/d (case of
the ferroAuid drops), and exp( —d/I): the results were
qualitatively the same. To decide the place of birth of a
particle, we compote in each point of the circle C the
value of the total energy due to all the previous particles,
and place the new element at the point of minimum ener-
gy. All particles after their appearance are given the
same radial motion with a velocity V(r), thus neglecting
any later reorganization due to the interaction of particles
[10]. In this case the results are qualitatively indepen-
dent of the chosen radial motion. In order to remain
close to botany [4,5] we chose an exponential growth
[V(r) =V~/R, ].
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FIG. 3. Diagram of the steady divergences v (v )0) ob-
tained as a function of G for two energy profiles I/d' (trian-
gles) and exp( —d/i) with l=O. I (squares). The solid line
shows a diagram obtained using the geometrical condition. In-
set: Detail of a transition.

A brutal way to start the simulation is, at a fixed value
of G, to begin without any previous particles and to see
which pattern is spontaneously obtained. For large G
( & 0.4) the divergence angles are the same as in the ex-
periment. But for small 6, the system undergoes long
transients, and either converges on various steady regimes
(with several possible values of y) or stabilizes on more or
less complicated periodic regimes. We will focus on the
steady regimes [11]. The possible values of p plotted
versus G form several curves (Fig. 3). In order to investi-

gate the limits of existence of each curve, we also initially
forced an artificial pattern and observed whether it could
keep growing. We find all the curves in Fig. 3 to be inter-
rupted above a limiting value of G, except for the main
one. All the obtained patterns present spirals with a
given set of parastichies numbers (i,j) (Fig. 4). Along a
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FIG. 4. A pattern i =13, j=21 obtained after a transient
from G 1 to 6 =0.01 which lasted 6T. At the bottom the con-
vergence of p from ) 80 to 137.47 is shown.

curve, when 6 is decreased the pattern undergoes a tran-
sition, at G; J, from parastichies numbers (i,j) to
(j,i+j). This corresponds to the change of sign of the
slope in the curve p(G). A remarkable asset of the dia-
gram (Fig. 3) is that near each G; 1 a new curve with
parastichies numbers (i,i +j) also appears with a
diA'erent p and thus disconnected. Following a given
curve p(G), a Fibonacci type of series builds up because
of the transition rule (i,j) (j,i+j). Each of the
curves p(G) corresponds to a different pair of initial
terms for the series and converges for G =0, towards the
related irrational angle. The main curve goes to
137.508', the others to 99.502, 77.955', 151.135, etc.
[3].

In terms of iterative dynamical systems, these transi-
tions are bifurcations. We find that near G~ ~, the thresh-
old of the first bifurcation, the divergence p varies as
Igo' —pa: (G~ ~

—G) ', and the number of iterations
(i.e., of particles) necessary to reach a steady regime
diverges. These are the characteristics of a direct
symmetry-breaking bifurcation. Here it leads from an al-
ternate pattern to a chiral spiral pattern. All the other
bifurcations, because the symmetry is already broken, are
imperfect (see below): at each of them only one curve is

continuous and a new curve appears disconnected (Fig.
3).

This is the key point of our result, and the main
difference with previous works [12-14] obtaining a type
of diagram first derived by Van Iterson [12]. He repro-
duced the phyllotactic arrangements by looking to the
regular patterns formed by hard disks paving a cylinder
(or a cone) and found a relation between p and the ratio

of the radius of the disks to that of the cylinder. In our
case, a diagram of this type can also be obtained by stat-
ing that a new particle appears exactly equidistant from
n —i and n —j fcf. Fig. 1(a)]. This approximation trans-
forms our dynamical problem into a geometrical one. If
a geometrical constant 0 of the assumed regular spiral
[15] is set equivalent to G, it is possible to compare the
geometrical relation between v/ and H [for each (i,j)]
and our simulations results (Fig 3.). As in all geometri-
cal models [12-14], the curve corresponding to paras-
tichies (i,j ) (with j &i) is connected at G;, with the two
curves (j,i+j) and (i,i+j). The geometrical models
fail to obtain the selection because they do not take into
account the fact that the condition on the new element is

not only to be located between two previous ones, but also
that its place should be the best (e.g. , the largest space).
To our knowledge only one previous work [16] has used

such a criterion in the simulation of the diAusion of an in-

hibitor in a cylindrical geometry. A convergence of p to-
wards N had been obtained though the overall structure
of the bifurcations diagram was not described.

All the bifurcations and their imperfections can be sim-

ply interpreted. For parastichies numbers (i,j ), the new

particle n is repelled essentially by the j previous ones,
and is precisely between n —i and n —j [17]. If G was
decreased and no other particles other than the latest j
are taken into account, the divergence would tend toward
a rational: n would appear at the same angular position
as a previous particle, which, from the regularity of the
pattern, is n —(i +j). But near G;, , the repulsion due to
n —(i+j) becomes no longer negligible and n slides to
avoid the proximity of this particle. As n —j is older than
n —I, the situation is not symmetrical and n is always an-

gularly between n —(i+j) and n —j [Fig. 1(a)]. Below

G;i, n thus slides between n —j and n —(i+j) selecting
the transition with the Fibonacci rule. When G is de-
creased, the system thus avoids all the successive possible
periodic arrangements and p converges towards the sirn-

plest irrational numbers. Figure 4 shows a pattern ob-
tained after a short transition (lasting 6T) in which G has
decreased from 1 to 0.01. In the resulting steady regime
i = 13,j=21 and p = 137.47 .

Our results can be compared to those of Levitov [Ig]
published during the course of our work. In a cylindrical
geometry he assumed a regular helical lattice with repel-
ling elements, and sought the lattice slope for which the
interaction energy is minimum. He showed that the
compression of the whole lattice produces a similar dia-
gram of imperfect bifurcations. This theoretical work ap-
pears far from the problem of botanical growth. The re-
lation to our work, however, is similar to that between the
investigation of the energy of periodic lattices and the
search for the growth mechanism of crystals. The con-
vergence of both results shows that the dynamics of ap-
pearance of the new primordia at the place of lowest

repulsive energy creates a final structure of minimum glo-
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bal interaction energy.
Examining finally the relevance of our results to botany

we can note that the process we described is robust rela-
tive to the law of interaction. A hypothesis for the phys-
iological process of the primordia's interaction was thus
not necessary. Our model is also robust relative to
change of the criterion of appearance of a new primordi-
um [19]. The plants' growth is usually characterized by
the plastochrone ratio P [20,21] which is directly related
to G [P exp(G)1. This parameter is known to vary dur-

ing the growth [16]. For instance Meicenheimer [21]
showed that the continuous evolution of phyllotaxis from
vegetative growth to flowering was essentially due to a
decrease of P. Our main result is that when 6 decreases
the parastichies numbers follow the Fibonacci series and
ip tends to oscillate towards 4 [22]. This self-organ-
ization through an iterative process could thus explain the
appearance and selection of the spiral botanical patterns
showing a Fibonacci order.
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