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A new method is presented which allows the determination of dynamical properties of disordered spin
systems avoiding finite-size effects. The method is based on exact dynamical mean-field equations for
the infinite large system. The resulting single-spin dynamics is solved by Monte Carlo simulations. We
outline the formalism for the parallel dynamics of a fully connected model with random couplings. The
decay of remanent magnetization of the model is studied. We find a power-law decay: m(t)
—m(o0) act 7¢ with @ =0.474 and m(c0) =0.184 for the infinite system.

PACS numbers: 87.10.+¢

Networks composed of spinlike elements which interact
via long-range random interactions are of growing in-
terest. Such models served as approximations for disor-
dered materials as, for example, the Sherrington-Kirk-
patrick (SK) model for spin glasses [1]. More recently
similar systems have become popular as models for neural
networks [2].

The equilibrium behavior of such random spin systems
is now well understood by applying the replica approach
to determine thermal averages for disordered systems [3].

Because of the lack of ergodicity these models show
many interesting features that are essentially of non-
equilibrium nature. Usually the dynamics at low temper-
atures will reach a state which will strongly depend on its
initial conditions. This property made networks of spins
useful for the models of associative memories [2].

To study the dynamics of fully connected spin models,
there are mainly two different approaches. The first one
is to calculate the time evolution of dynamic quantities
analytically using the so-called dynamical functional
method [4]. This method has been successfully applied to
the behavior of disordered spin systems at long time
scales being able to recover and understand the equilibri-
um results mentioned above from a purely dynamical
viewpoint [5-7].

Unfortunately the situation is less satisfactory for the
nonequilibrium, transient behavior. Apart from approxi-
mate treatments [8,9] exact calculations are only possible
for very few time steps, e.g., up to four time steps for the
SK model and two time steps for the Hopfield model
[1ol.

So most of the studies on dynamics of disordered spin
systems rest on numerical simulations, which is the other
possible approach. However, there are strong finite-size
effects, which for example do not even allow a decision if
there is a finite remanent magnetization for the infinite

spin system. In this Letter we propose a new method to
avoid these finite-size problems. Our method combines
the dynamical functional method, which allows us to per-
form the limit N — oo exactly, and a Monte Carlo simu-
lation of the resulting stochastic one-particle equations.
The method is demonstrated for a disordered spin system
with synchronous dynamics.

This model consists of N Ising spins S; = * |, where
every spin S; is connected to all other spins S; by cou-
plings J;;, which are Gaussian random variables with dis-
tribution P(J;;) =vN/2zexp(— 3 NJ3). Additionally
the symmetry of the couplings is given by the symmetry
parameter n:

[Jjiji]=7]/N. (1)

This means the couplings are fully antisymmetric (J;;
=—J;) for n=—1 and fully symmetric (J;;=Jj) for
n=1. In the latter case the model corresponds to the
Sherrington-Kirkpatrick model.

These couplings can be constructed from

Uy =NF DRI+ ST I @

with Jj; =Jj; and Jf; = —J};, where Jj; and J§; are now in-
dependent random Gaussian variables for all i and j. We
shall restrict ourselves to the simplest type of noise free
dynamics where all spins are updated in parallel:

S;(t+1)=sgnlh; ()], i=1,... N. (3)
The internal field of the spin S; is given by

h,‘(t)=z.l,'ij(t). (4)

j=i
Instead of simulating the system (3), we follow the dy-
namic functional approach mentioned above. It uses the
fact that average values of dynamical quantities can be

| obtained from a generating function:

[z, = Trs,.(,)fn{dh,(t)e(s,(t+ Dhi(1))s [hi(t) =Y Wa+n72J;+J/0 -—r;)/2J,~"j]S,-(t)]}
it J=i
XCXP [lzl,(t)h,(t)] ] 5 (5)
it J
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where [ - - - 1; denotes an average over the random couplings. The normalization [Z(0)], =1 holds for the generating

function.

Following the usual approach of dynamical mean-field theory [7] we perform the average over the J;; and tra.nsforf'n
the remaining expression using saddle-point methods, which are exact in the limit V— oo. The result can be written in

the following form:

znl, = lrrs,_(,, f H{dh,—(t)e(S,-(t+ Dhi())s [h,-(t) —i(0) — nZKmSi(s)] ]exp [iiz':h(t)h,-(t)] ] : (6)

Here [ - - - ], denotes an average over the time-dependent
Gaussian random variables ¢;(t). The K, represent
time-dependent order parameters. Generating functions
can be used to derive equations of motion for various
averaged quantities. In equilibrium these could be calcu-
lated, e.g., by means of perturbation expansions or, if a
fluctuation dissipation theorem [7] is valid, even exactly.

To treat the nonequilibrium case, we directly use the
fact that (6) describes a new system of stochastic dynam-
ical equations which reads

Si(t +1)=sgnlh; ()],

)
h,‘(l) =¢i(l) + T]ZK”S[ (s).

The time correlations of the Gaussian noise variables
are prescribed by saddle-point equations as

[¢,~(s)¢j(1)].,=6,~jC”=6,~,~[S,-(s)S,-(1)].,,. (8)

In contrast to the original system (3) the Gaussian ran-
dom variables are uncorrelated on different sites i. Thus
the dynamical equations (7) are no longer coupled to
each other.

The coefficients K, are obtained self-consistently from

S ()
agpls) |,’

where the index “i” was omitted since the average does
not depend on the site.

We are left with a “one-particle” equation for each
spin S(z). The internal field of S at time ¢ consists of the
Gaussian noise variable at the same time and a part
which describes a deterministic coupling to the spin at
the same site but at all previous time steps [S(s) for
s <t]. The time-dependent order parameters K,, deter-
mine the strength of these couplings. Obviously K,, =0
for s = 1 because of causality.

The values of all spins [S(s) for s <] at a given site
can be replaced by functions of their internal fields at one
time step before. Doing this recursively, we will end up
with an explicit function for S(¢+1), depending only on
the Gaussian noise variables ¢(s) for s <t. Given the
values of K, for s <t, and correlations C.s for t,s <1,
averages for all dynamical quantities (spins, internal
fields, etc.) defined at an arbitrary site i can be found for
the next time 7+1 from one single equation of (7)
without any finite-size effects. Since Ki+i1s and Cy4
themselves are averages of this type, the entire procedure
is self-consistent.

K= )

¢

—

Dynamical mean-field equations for disordered systems
could be solved analytically only in rather limiting cases.
These include models where the equations are essentially
linear (see, for example, [11]), or the case of completely
asymmetric interactions (7=0), where the complicated
memory terms vanish [12-15].

In this Letter we treat the nonlinear case (7) for gen-
eral n by performing the averages via direct Monte Carlo
simulations of the stochastic single spin dynamics (7).
We generate a large number, say N, of trajectories for
the spin variables at only one single site i. Nt should not
be confused with N, the number of spins in the network,
which equals infinity.

Expression (9) in its present form is not suitable for
simulations. Since the ¢(s) are Gaussian variables and
S (1) is only a function of these, we can apply the follow-
ing identity (see, for example, van Kampen, p. 26 of

[16D):

[¢zSt]o=ZK1x[¢s¢r]o~ (10)
For a given time ¢ this is a system of linear equations
which determines the coefficients K,; for s=0,...,r—1.

Now we are able to describe the algorithm for the Monte
Carlo simulation of the single spin equation.

(1) Start at t=0.—(a) Set S*(0)=1 for all
k=1, ...,Nr, where N7 denotes the number of spin tra-
jectories. (b) Set h*(0) =¢*(0), where the ¢*(0) are
drawn _independently from the distribution P($*(0))
=1/V2rexp{—[$*(0)1%/2}.

(2) An arbitrary time step t.— (a) Evaluate the spins
at time ¢ from the dynamical equations

Sk(t) =sgnlh*(t—1)] for k=1,... ,Nr. (11)

Note that the internal field 2¥(t—1) was already calcu-
lated at time step 1—1. (b) Calculate the sample aver-
ages over all trajectories,

S;S; for t=0,...,t—1, (12)

which give the correlation matrix for the Gaussian noise
variables:

$odo G100 - ido 1 55 - §So
. |00 d100 §iSo |1
Q= . = :
$d0 - o) S So - 1
(13)
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(g) Now perform the decomposition b, =A,-A,T, where
A, is a triangular matrix. (d) Draw the components of
the vector N, =(ng,n;,...,n)7 independently from a
normal distribution. Transform this vector according to

¢1 ==1&4' P‘t N (l 4)

which gives the right correlations for the components of
¢.. (e) Compute the sample averages ¢.S, for

t=0,...,t. (f) Obtain the coefficients K,q, ... ,K; -
by solving the system of linear equations

x =K, &, (15)
with

X =(poSi,....0:8)7,

. (16)

K, "_‘(K/O,th e vKll“laO)T .
(g) Determine the internal fields from

A () =% () +n X K, S* (7). a7

<t

(3) Iterate the steps 2(a)-2(g).

With the algorithm described above, we are immedi-
ately able to calculate all averages of dynamical quanti-
ties of the model, which depend on a single spin. As an
example, we estimated the temporal behavior of the mag-
netization m (1) =S()S(0), for n=1, which measures
the memory of the system to its initial conditions.

For the magnetization after two and four time steps we
get

m(2) =0.574 £0.001, m(4)=0.469+0.001, (18)

which is good agreement with the values obtained by
Gardner, Derrida, and Mottishaw [10] from an analytical
calculation:

m(2)=0.575, m(4)=0.468. 19)

Of special interest in the limiting value of m(t) as
t— oo, the remanent magnetization m,. Especially for
this quantity finite-size effects were found to be very
strong [17-20] and it is still unclear what is the correct
finite-size scaling function to be used. So the extrapolat-
ed value m, (o) obtained from finite-size scaling changed
over the years by going to larger maximum system sizes.

We performed simulations of the one-particle equa-
tions up to ¢t =100 time steps and Ny =1000000 spin tra-
jectories. The data are plotted in Fig. 1 (open squares).
It turned out that the decay of magnetization can be
fitted very well by a power law:

m(t) —m, (o)t~ (20)
with
m, (=) =0.184+0.002, a=0.474+0.005. 1)

This corresponds to the curve in Fig. 1. The resulting
value of m,(c0) in the thermodynamic limit is in very
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FIG. I. Decay of the magnetization for the neural network
model with random couplings and n=1, which corresponds to

the SK model. The data are shown (open squares) for the first
100 time steps. Each point is an average over N7 =1000000
spin trajectories. The statistical errors are much smaller than
the symbol sizes. Inset: A log-log plot of these data. The
straight line corresponds to the fitted power law.

good agreement with the extrapolated value for the up to
now largest systems investigated by Kohring and
Schreckenberg [20]. Again note that these results do not
contain any uncontrolled dependencies on the system size
N as all previous results. We only have statistical errors,
which originate in the finite number of trajectories Ny
Since these trajectories are statistically independent the
errors are expected to be of order 1/N4/2. In fact, a com-
parison of our numerical estimates for K, for all odd
time differences ¢ —s with their exact values, which were
found to be zero in Ref. [10], confirms this behavior.

Because of the uncontrolled errors in finite system
simulations we cannot compare the CPU times used by
simulations for finite systems and the algorithm presented
here. Nevertheless we would like to mention that our
simulations took only 6 h of CPU time on a Cray Y-MP,
which we think indicates that the method can be imple-
mented efficiently in simulation practice. So we think the
new method passed the first test.

Further results, like the dependence of the remanent
magnetization on the symmetry n will be published in a
forthcoming paper together with a more detailed analyti-
cal derivation of the one-particle equations. Clearly our
approach is not limited to the deterministic dynamics (3).
We can easily include a fast external noise to mimic the
effects of temperature. Presently it is not clear whether,
by an investigation of the dynamical functional developed
by Sompolinsky, Crisanti, and Sommers [13,21], one can
derive a similar single-spin equation for random sequen-
tial update of the spins.

In general our method will be applicable to all systems
with an infinite range of interactions such that a mean-
field treatment becomes exact. This includes most of the
models of attractor neural networks. Other interesting
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candidates for applications will be the dynamics of learn-
ing algorithms for feedforward networks [22] and other
optimization problems.
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Deutsche Forschungsgemeinschaft.
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