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Linear Stability Analysis of Rotating Spiral Waves in Excitable Media
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Fast numerical methods are used to solve the equations for periodically rotating spiral waves in excit-
able media, and the associated eigenvalue problem for the stability of these waves. Both equally and
singly diffusive media are treated. Rotating-wave solutions are found to be discretely selected by the sys-
tem and an isolated, complex-conjugate pair of eigenmodes is shown to cause instability of these waves.
The instability arises at the point of zero curvature on the spiral interface and results in wavelike distur-
bances which propagate from this point along the interface.

PACS numbers: 82.20.Mj, 82.20.Wt, 87.90.+y
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Spiral waves are probably the most pervasive structures
in nonequilibrium reaction-diA'usion systems. These
waves are observed in a wide range of contexts, from
chemical reactions and physiological media to slime-mold

aggregates and insect population dynamics [1]. While a
general theoretical understanding of these spirals has
been rapidly emerging through the eA'orts of several
groups [2], the analytical treatment of spiral waves has

proven extremely difficult, and as a result, there are still
significant gaps in our understanding of the spirals so
commonly observed in nonequilibrium media.

Of fundamental importance is the stability of a single,
periodically rotating spiral wave in a two-dimensional ex-
citable medium (Fig. 1). Such rotating spirals [3] are
often observed to lose stability as some control parameter
of the system is varied. This instability and the unsteady,
i.e., quasiperiodic, spirals that ensue have been the sub-

ject of intense experimental and theoretical study [4-11].
Despite numerous investigations of this instability, very
little is known definitively about its character other than
that it typically arises via a Hopf bifurcation. Until now,

there has been no direct linear stability analysis to deter-
mine explicitly the eigenvalues of rotating spirals or the
form of the bifurcating eigenmodes. As we shall show,
the bifurcating eigenmodes provide key insights into the

spatiotemporal character of the spiral instability. More-
over, the eigenvalue spectrum immediately determines
whether the instability is associated with isolated or con-
tinuum of eigenvalues, and whether rotating spirals are
themselves selected by the system. These basic issues for
spiral waves are addressed here by employing fast numer-
ical methods to solve the full, two-dimensional field equa-
tions for rotating spiral waves and the associated eigen-
value problem for the stability of these waves.

Our study is based on the two-species model of an ex-
citable medium [7,12]:
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where a, b, and e are parameters of the reaction kinetics
with e«1, and 8 is the ratio of diA'usion coefficients.
This model, like other two-variable models of this general
type, faithfully captures the behavior of many excitable
systems. Because of the smallness of e, the u field takes
on one of two states almost everywhere: quiescent (u =0)
and excited (u=l). A thin interface, or reaction zone,
separates the two regions (Fig. 1).

We seek rotating-wave solutions of (1), that is, solu-
tions which satisfy t), = —tools, where to is the wave speed
of the rotating wave. Such rotating waves satisfy the
steady-state equation

0 = F(u) =b&'u+ tor)—su+ f(u), (2)

=0

F10. 1. Periodically rotating spiral wave in an excitable
medium. The wave rotates counterclockwise at constant speed
and is steady in the appropriately rotating frame. Contours of
the fast variable u (equally spaced from u =0.1 to u =0.9) illus-

trate the sharp interface between the quiescent (u =0) and ex-
cited (u=l) states of the system. Parameters (listed in Fig. 2

caption) are such that the spiral wave is just at the instability to
quasiperiodicity.

DF(u)u =A,u, (3)

where k and u are the eigenvalues and eigenmodes of

where u=(u, v), b=diag(1, 8), and f(u) represents the
kinetic terms in (1). The boundary conditions are B,u =0
on a circle of radius R, so that the system is rotationally
symmetric. Equation (2) is a nonlinear eigenvalue prob-
lem for the wave speed co.

Associated with (2) is the linear eigenvalue problem
for the stability of rotating waves:
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field u, and

DF(u) =8V +ro8g+Df(u) . (4)
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This linear eigenvalue problem is equivalent to the Flo-
quet problem for rotating waves when viewed as a time-
periodic orbit in the rest frame.

We solve (2) and (3) by representing all fields on a po-
lar grid and solving the resulting discretized equations
with numerical methods described fully elsewhere [13,
14]. Because the evolution equation for v in (1) is linear,
v can be completely eliminated from the steady-state
problem via a Green function. The remaining (nonlocal)
steady-state problem is solved by Newton's method. This
can be done in a fast way using Krylov methods [13]
which exploit the fact that the right-hand side of (2)
differs significantly from zero only in the vicinity of the
thin u reaction zone. Because of rotational symmetry,
solutions of (2) are determined only up to an arbitrary
orientation in 8. This phase freedom is eliminated by
augmenting (2) with an additional equation which pins
the phase of the spiral. This extra equation allows co to
be treated as an additional unknown, thereby permitting
the pair (u, ro) to be computed in concert. Newton itera-
tions are started from a solution obtained by direct simu-
lation of (1). Continuation is then used to obtain
rotating-wave solutions at other parameter values, includ-
ing parameters such that these solutions are unstable.
The leading eigenvalues (those with largest real part) and
their corresponding eigenmodes are obtained from (3) by
direct application of the methods in [14].

For results reported in detail here, we have used
N, =121 radial and N~=256 azimuthal grid points. The
thin reaction zones in the u field are fully resolved. All
operators are evaluated spectrally in the 8 direction and
using fourth-order finite differences in the r direction (ex-
cept at r =R where second order is used). Newton itera-
tions of (2) are stopped when i iF(u) i i & 10;which is
more than 100 times smaller than can reasonably be ob-
tained by time stepping (1). Norms refer to the Lz norm
of the 2&N, xN& discrete quantities. For eigenvalue
problem (3), the residuals satisfy iiDF(u)u —

Ruing

(10
Figure 2 shows the five leading eigenvalues for both the

singly diffusive (8=0) and equally diffusive (b= 1) cases.
While our methods are applicable for any value of 6', we
treat only these two cases here as they occur most fre-
quently in practice. We find that as 6' is varied from 0 to
1, the spiral instability shifts to smaller e and larger a
(for fixed b). Hence, in choosing the two representative
examples to show in Fig. 2, it was necessary to vary the
kinetic parameters accordingly. A survey of parameter
space for this model will be presented elsewhere.

Consider first the eigenvalues on the imaginary axis.
Because of rotational symmetry, rotating spiral waves
have a zero eigenvalue, A, R. As can be verified immedi-
ately from (3), the eigenmode with zero eigenvalue is

= 6=0
0
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FIG. 2. Leading eigenvalue spectra for b=0 and 8=1.
Crosses show eigenvalues on the imaginary axis due to sym-
metries (or approximate symmetries) of the problem. Squares
show bifurcating eigenvalues before and after the instability,
with arrows indicating the path taken as they cross the imagi-
nary axis. The bifurcation parameter is a. For 8=0 the pa-
rameter values are a=0.70 (solid squares) and a 0.6I (open
squares), b = IO, a=0.02, and R l8. For b'= I the parame-
ters are a 0.35 (solid squares) and a=0.26 (open squares),
b=10, t. 8x10, and R=12. Because of variation in

wave speed with a, the purely imaginary eigenvalues vary
slightly with a and are plotted at the bifurcation points:
a=0.643 (8=0) and a=0.286 (b=l). The spiral in Fig. l is
at the bifurcation point for 8=0.

uR =Beu, where u is the spiral solution of (2). For spirals
on the infinite plane there is also translational symmetry,
so that in a frame rotating with speed m, there is a
complex-conjugate pair of eigenmodes, uT=8„u i8yu,
with eigenvalues A, T =+ im. Translational symmetry is

broken by our boundary conditions and we expect the ei-
genvalues to move slightly off the imaginary axis. How-

ever, for sufficiently large domains, the real part of these
eigenvalues is numerically indistinguishable from zero.
Specifically, over the range of parameters indicated in

Fig. 2, we have the following numerical bounds for the ei-
genvalues on the imaginary axis. For 8=0, i&Ri &3
x10, iRe(XT)i &8x10, and elm(XT)/ru —

1 i &5
x10 . For b=1, iltgi &4x10, iRe(XT)i & 10
and elm(AT)/ra —

1 i & 6x10 . These bounds testify to
the accuracy of our numerical solutions.

Consider now the complex-conjugate pair of eigenval-
ues which cross the imaginary axis and lead to the
spiral-wave instability (Hopf bifurcation). The method
used to solve (3) necessarily produces eigenvalues ordered
by their real part. Thus we know definitively that when

the bifurcating eigenvalues A, g are in the positive half
plane, they are isolated: There are no other eigenvalues
between (in the sense of real part) the bifurcating pair
and those on the imaginary axis. In addition, we have
tested the robustness of the bifurcating eigenvalues, both
before and after the instability, to changes in grid resolu-
tion and domain radius R. ln the case 8= 1, Re(k.p)
varies under such changes by approximately the width of
the squares plotted in Fig. 2; otherwise, the variation in

A,z is far less than the square size. We conclude that even
for an infinite medium, the bifurcating eigenvalues are
isolated, i.e., they lie in a discrete part of the spectrum of
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operator (4). Hence, over a parameter range the spirals
are unstable to a single pair of complex modes.

The spectra in Fig. 2 provide direct evidence that the
spirals considered here are discretely selected by the sys-
tem. This follows from the fact that the root of an equa-
tion is simple, hence isolated, if its linearization has no ei-
genvalues on the imaginary axis. Generically, there are
no eigenvalues on the imaginary axes in Fig. 2 except
those which can be accounted for from symmetry con-
siderations. Hence, there are no spiral solutions near a
pair (u, ra) except those obtained through symmetry
operations and the spiral waves are not part of a continu-
um of solutions to (2) with continuously varying shape
and/or wave speed [15].

The bifurcating eigenmode in the case 6'=0 is detailed
in Fig. 3. We focus on the u component of the eigenmode
u. The eigenmode is localized at the thin interface of the
spiral wave, and at the instability, it has an extremum ex-
actly at the point of zero curvature along the u =

& con-
tour of the spiral (see below). Hence we consider u(s),
where s is the arclength along this contour with s —=0 at
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FIG. 3. Bifurcating eigenmode for the case 6=0. Parame-
ters are as in Fig. 2. Results are plotted as a function of arc-
length s along the u = —,

' contour of the spiral wave, with s =—0 at
the point of zero curvature. (a) Real part, u' (solid curve), and
negative imaginary part, —u (dashed curve), of the bifurcating
eigenmode prior to the bifurcation, a =0.70. (b) Same as (a)
except at the bifurcation, a =0.643. (c) The eigenmode's local
wave number, —p' (solid curve), and curvature of the spiral
wave, x (dashed curve), at the bifurcation. The curves are in-

distinguishable except near the extrema. (d) Magnitude of the
eigenmode, p, for several values of the parameter a. At the bi-
furcation, a =0.643 (bold solid curve); before the bifurcation,
a =0.70 (long-dashed curve) and a =0.67 (medium-dashed
curve); after the bifurcation, a =0.6l (short-dashed curve).
Boundary eAects are visible at the extremes of s.
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the point of zero curvature (tc =0), and s )0 on the lead-
ing edge of the spiral. The complex mode u(s) is con-
veniently written as u (s) =u'(s) +i u'(s) or as u (s)
=p(s) exp[i'(s)].

Figures 3(a) and 3(b) show the real and imaginary
parts of the bifurcating eigenmode prior to and at the in-

stability. Eigenmode u corresponds to a time-dependent
perturbation of the form Re[u exp(Rat)], so that apart
from the overall growth factor exp[Re()jest)t], u'(s) and
—u'(s) illustrate the perturbation separated by ht =z/
21m(XB). Clearly the spiral instability corresponds to
wavelike disturbances which propagate away from the
point of zero curvature. This is shown quantitatively in

Fig. 3(c) with a plot of curvature, tc(s), for the bifurcat-
ing spiral and —p'(s) for the critical eigenmode. ( —p'
= —dp/ds is interpreted as the local wave number. ) The
local wave number of the eigenmode changes sign pre-
cisely at the point x =0, implicating this point as the
source of counterpropagating waves. Everywhere except
near the extrema in tr, p'= —1.35x. Far from the tip, the
data are consistent with the scaling: p'cx: x -1/r.

Further insight into the instability comes from the
magnitude of the bifurcating eigenmode, p(s), shown in

Fig. 3(d). At the instability, p(s) has a maximum exact-
ly at the point of zero curvature and decays very slowly

away from this point. The critical eigenmode is definitely
not exponentially localized to the tip region; the numeri-
cal data are consistent with power-law decay p(s)
—isi, with a=0.19~0.02 at the instability. Because
of the slowness of the decay, however, it is impossible to
conclude with certainty its asymptotic form. The most
surprising feature of the bifurcating eigenmode is its
qualitative change just prior to the instability. Away
from transition where the spiral is stable, p(s) has a local
maximum approximately at s=0, but otherwise grows
linearly along the spiral arm: p(s) —isi. We have found
this linear growth of the eigenmode generic for spirals far
from the instability. Only very near the bifurcation does
the extremum at s =0 become dominant.

We find the bifurcating eigenmode for 6=1 to be qual-
itatively the same in all respects to the case 6=0 illus-

trated in Fig. 3. There is, however, significant quantita-
tive variation with 6 and we are unable to compute as
many spiral wavelengths for the case 6=1. Figure 4 il-

lustrates, with contour plots of the tip region, the critical
eigenmodes for both 6=0 and 6=1. At this time we find

no reason to believe that the two cases are fundamentally
diAerent as regards the spiral-wave instability.

The instability, as seen in the rotating frame, is sum-

marized as follows. 3ust prior to the bifurcation, the de-
stabilizing eigenmode develops a maximum at the point
of zero curvature on the spiral interface. This point is

then the center of the instability. After the instability
sets in, periodic disturbances propagate away from this

point in both directions along the interface. Both the am-

plitude and wave number of these disturbances decay
slowly (i.e. , power law) with distance from the tip region.
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FIG. 4. Spirals perturbed by the real (solid lines) and imagi-

nary (dashed lines} parts of the critical eigenmode. (a) 8=0,
a=0.643; (b) b=l, a=0.286. Contours are shown for the
fields u ~ gu' and u ~ gu', where the constant g is chosen sepa-

rately for (a) and (b) such that the contour envelope is approxi-

mately the interface width. The bar denotes 4 length units, cir-
cles denote grid centers, and crosses denote the points of zero
curvature on the u= —,

' contours of the bifurcating spirals.
Numbers in (a) indicate time ordering over one bifurcating
period; contours in (b) have the same clockwise ordering. By
observing contours at successive times, it is possible to discern
the standing character of the eigenmodes at the crosses and
their propagative character away from these points.

There are two caveats to the preceding picture. The
first is that the contours of Fig. 4 have maximum ampli-
tude variation, not at the point of zero curvature, but al-
most exactly at the point of maximum curvature. This is

due to nonuniformity in the interface near the spiral tip
(e.g. , Fig. I). At the present it is not known to what ex-
tent this nonuniformity persists as t. 0. The parame-
ters considered here are, nevertheless, appropriate for
realistic systems. The second caveat is that for certain
parameters the bifurcating eigenvalues coalesce with the
imaginary pair due to translational symmetry. In the vi-

cinity of such a coalescence, the bifurcating eigenmodes
have the character of the translational modes. Such situ-
ations are, however, atypical.

As regards the nonlinear dynamics of Eqs. (I), direct
simulations show that the bifurcations considered here
are supercritical and saturate at finite amplitude. The
fully nonlinear behavior in the vicinity. of the bifurcations
is similar to that reported previously for this [7,12] and
other [4-6,8, I I] models, and is in qualitative agreement
with experimental studies of the spiral instability
[5,9, IO]. Further examination of the nonlinear behavior
will be presented elsewhere.

In conclusion, we have elucidated key features of the
spiral-wave stability problem through direct numerical
solution of a model excitable medium. The model studied
is representative of a broad class of excitable systems and
we expect our results to be equally broad. Because we
have obtained highly accurate solutions with no assump-
tions whatsoever as to their form, our results provide a
valuable guide and benchmark for ongoing work using ki-
nematic and free-boundary approaches to the study of
spiral waves [2]. Contrary to what has been implicitly as-

sumed in the past, our results suggest that the spiral in-

stability has little or nothing to do with the point of max-

imum curvature on the spiral interface. We have instead

identified the point of zero curvature as the center of the

instability and suggest that future studies focus on this

point. Finally, when unsteady, i.e., quasiperiodic, spiral

waves obtained from direct simulations are plotted in the

rotating frame, the character of the destabilizing eigen-

mode is clearly seen. Hence, much of the eigenmode
structure presented here should be visible in experimental
data when viewed in the appropriately rotating frame.
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