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Pattern Formation in Screened Electrostatic Fields
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It is shown that screening greatly diversifies the type of patterns that can grow in an electrostatic field.

Screening introduces a new length scale and a nontrivial dependence on the boundary conditions. Grow-

ing patterns can either have a fractal character (dilTusion-limited-aggregation-like) at scales shorter
than the screening length, be similar to the Eden model, or even be dense. A transition from dense to
multibranched growth occurs at a point which depends on the potentials at the boundaries, the distance
between them, and the screening length.

PACS numbers: 68.70.+w, 05.40.+j, 61.50.Cj

The diffusion-limited-aggregation (DLA) [I] and
dielectric-breakdown (DB) [2] models have been very
successful in illustrating the possibility of fractal growth
[3] in Laplacian fields. Nature does offer, however, a
much richer scenario in which both fractal and nonfractal
patterns may grow. The dependence on the boundary
conditions in DB discussed in Ref. [4] illustrates this
point: A change in the shape of electrodes induces drastic
changes in the growing patterns which evolve into a rath-
er dense multibranched structure with fractal dimension
D-2. Although several reasons have been suggested [4]
to explain such a variety of patterns, among which we
mention the existence of a threshold field and the internal
resistance of the breakdown pattern (plasma channels in

the case of a discharge in a gas), in very few instances
have their effects been analyzed in any depth. Only the
possibility of a different growth law in which the growth
rate is assumed to be proportional to a power, different in

general from unity, has been examined in detail in the
DB context and, by utilizing an equivalent approach, in
DLA [5]; it has also been used to explain the more-
diluted-than-DLA patterns that may occur in nature.
Note, however, that there are microscopic reasons for ex-
pecting rt = I in DB [6]. More recently, the possibility of
a crossover from a DLA pattern to a more dilute one has
also been investigated by using more complicated growth
laws, both in DB [7] and in the somewhat similar
phenomenon of mechanical breakdown [8,9]. The variety
of structures further increases for the growth of metallic
aggregates through electrochemical deposition (ECD).
These may have a fractal character like in DLA, be den-
dritic crystals, or give rise to dense radial structures
[10-12]; the stability of the latter has been ascribed to
the finite resistivity of the aggregate [10],or to anion mi-
gration between the electrodes [12-14]. Besides, a tran-
sition from a dense pattern to a more diluted branched
structure has been observed [11,14,15] and referred to as
the Hecker transition [15]. To explain this sharply
defined transition several mechanisms have been proposed
[11,14], all having in common the interplay between the

Laplace field and the diffusion field.

In this Letter we investigate the effects of screening on
structures growing in electrostatic fields. The origin of
screening might lie in the presence of free charges such as
in the case of ECD and DB. From elementary considera-
tions of thermal equilibrium, the Debye-Hiickel theory
deduces the existence of a screening length which de-
pends on the total density of charges and the temperature
[16]. The same situation may arise in DLA; in this case
screening might be due to the presence of sinks (screen-
ing) or an ambient of particles (antiscreening). We have
carried out numerical simulations and an analytical study
along the lines proposed by Mullins and Sekerka [17].
The results show that screening leads to a much richer
variety of patterns. It introduces a new length scale and
a nontrivial dependence on the boundary conditions
which, as discussed below, is responsible for a transition
that resembles the Hecker transition. Patterns may have
a fractal character at scales shorter than the screening
length, be Eden-like, or grow dense. The mentioned tran-
sition (from dense to multibranched growth) is shown to
occur at a point that depends on the potentials at the two
boundaries, the distance between them, and the screening
length.

We concentrate on the DB model [2]. In that model, a
breakdown pattern is allowed to grow in a dielectric
medium placed between two electrodes at different poten-
tials. The aggregate is assumed to be a perfect conduc-
tor, and, thus, at constant potential, whereas fields in the
dielectric follow the Laplace equation. To account for
screening we replace the Laplace equation by

V-P=k 4.
Antiscreening would correspond to a minus sign on the
right-hand side (RHS) of Eq. (I ); its effects will be
brieAy discussed at the end of this Letter. To illustrate
the ideas we shall restrict our investigation, as stated
above, to a planar geometry (growth in a channel). Some
comments on growth in a circular geometry (two dimen-
sions) will also be made.
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Numerical simulations were carried out on samples of
the square lattice of sizes 100X200. The boundaries
along the longest direction were taken as electrodes at
constant potentials p' (inner) and tk" (outer), whereas
periodic boundary conditions were used in the shorter
direction. To originate an aggregate the standard growth
procedure [2] was followed assuming a growth rate pro-
portional to the absolute value of the field at the surface
of the aggregate. As usual Eq. (I) was solved iteratively.
I t has to be remarked that screening can strongly de-
crease the potential at the surface, changing quickly (see
Fig. I ) as the pattern evolves, and thus the error used to
stop the iteration process should be decreased or in-

creased conveniently. Our criterion was that the max-
imum error at each node was less than 1% of the average
value of the electric field at the boundary of the pattern.
This gave around 50 iterations to relax the electrostatic
field.

In an experiment, the external circuit fixes the poten-
tial drop, p' —p". The average position of the potentials,
(p,'„,+p„"„,)/2, is determined by the requirement of charge
conservation at all times (within the Debye-Hiickel
theory, the charge distribution is linearly proportional to
the electrostatic potential). In our simulations, we have
f'ound that the latter constraint is well satisfied with no

adjustment of the average potential once the initial values
ol p" and p' are given. Thus, within reasonable accuracy,
the initial values of the potential can be considered as in-

dependently tunable parameters, which are kept fixed at
all times. Care should also be taken that the linearization
implicit in the Debye-Hiickel theory can be applied.

To get a qualitative idea of the effects of screening on

the growth process, we first analyze the stability of a
slightly deformed smooth surface by following the treat-
ment first discussed in Ref. [17]. Let us consider a flat
surface growing in the y direction between two electrodes
at potentials p' and p", respectively; the flat surface will

be placed at y =I and at a constant potential p'. We then

where

x cos (mx ), (2a)

Ao(y) = p" sinh[X(y —I)]+kk'sinh[) (L —y)]
sin h [X(L —I ) ]

(2b)

L is the length of the cell in the growing direction (y),
and E(l) is the electric field at the flat surface (y =I),

p' cosh [k(L —I ) ] —kk"
&

si nh [k(L —I )]
(2c)

Then, assuming that the growth rate i is proportional to
the field at the surface of the aggregate and [ = I
+ icos(mx), we find for the ratio between the instantane-
ous rates of growth of the perturbation (8) and that ol
the flat surface (I) the following expression:

a„,= . = (X-+m-)'I- — I.6/6

I/I E(l) (3)

In the case of no screening Eq. (3) reduces to the known

result a„,=ml. When screening is present the instantane-
ous growth rate depends on the potentials at the elec-
trodes, the gap between them (L —I), and the screening
length (k '). Two cases should be difl'erentiated. For
p" (p', the field at the surface of the aggregate has the
same polarization of the electrodes for all values of I
[E(l))0]. Thus, the second term in the RHS of Eq. (3)
is always negative, decreasing in absolute value as the
pattern evolves. Consequently, the effect of screening will

be to create dense structures which become more dilute
while growing, but still resembling the Eden model.

More interesting changes are found in the case of
In this case the most appealing feature is the

deform the surface as y'=I+icos(mx), 6 being very
small. In the screened case the potenti il takes the form
(setting P =P' at ) = t')

y(x,y) =$0(y) + E(l)Bexp[ —(k'+m -') '-'()' —I )]
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VtG. 1. Three stages of growing and velocity (average of the absolute value of electric field at the surface of the aggregate) for
' = 10, p" = 1, and III

' = 10
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possibility that E(I) vanishes. For L»I and provided

that P"/P'(cosh(XL), E(l) is opposite to the polariza-
tion of the electrodes [E(l))0]. It goes to zero at a
given value of I and, beyond this point, it is always nega-
tive. As a consequence, the second term in a„,is initially

negative, as in the previous case, but now it increases in

absolute value. As the length of the aggregate increases,
and the zero of the denominator is approached, the
screening term slows down perturbations of every wave-

length, and the growth rate is reduced. The a„,'s will

vanish at different values of I, favoring dense growth.
Then, at a distance which depends on the parameters of
the problem (P", P', and the screening length k '), E(l)
vanishes and the growth rate for all m's goes to ~. Thus,
beyond this point all wavelengths become unstable. Once
a sharp tip develops, it will be amplified. This behavior is

a consequence of the potential and its associated charge
distribution. Before the transition, there is a small

screening layer near the growing electrode. In the inter-
mediate region the potential decreases to a value close to
zero, to rise again near the external electrode. Hence,
there are two unequal charge layers near the electrodes.
Beyond the transition these two layers merge and the po-
tential increases monotonously between the aggregate
and the outer electrode.

The previous analysis fully coincides with the numeri-

cal results shown in Fig. 1. Moreover, for the parameters
of that figure we have calculated from Eq. (3) that the

length of the aggregate at which the transition is predict-
ed is /-101, in excellent agreement with the numerical
results. It should be pointed out that this is a remarkable
demonstration of the validity of the analysis first suggest-
ed by Mullins and Sekerka [17]. The possibility of dense
growth is also well illustrated in Fig. 2, where again the
transition occurs at the point predicted by the analytical
study. In Fig. 1 we have also plotted the average growth
speed, that is, the average of the absolute value of the
field at the aggregate surface. We note that, as discussed
above, the velocity vanishes at the transition. Finally we

refer to the width of the thin branches that grow once the
transition point has been surpassed. As is also illustrated
in Fig. 2 its width increases as A. decreases (being DLA-
like at scales shorter than the screening length X '). The
introduction of this new length scale is also apparent in

Eq. (3). It is remarkable that screening produces dilute

patterns without the need of using a growth rate propor-
tional to a power g of the electric field different from uni-

ty, which, as remarked above, has no microscopic basis
[4,6].

We have also considered under which conditions sev-

eral branches may develop. Screening reduces the range
of the interaction, and, therefore, should pose no prob-
lems to the growth of parallel branches. In the simula-
tions outlined above, however, particles are added one at
a time. This effect induces a sharp threshold in the veloc-
ity of growth, so that points where the fields exceed this
threshold will grow and not others. As the fields, in this
screened situation, have an exponential dependence on
the separation between electrodes, this artificial cutoff
prevents most of the front from growing. To overcome
this difficulty, we have considered a front of particles that
may attach stochastically at different sites without rear-
ranging the potential at the aggregate. The results are il-
lustrated in Fig. 3. As expected, several parallel branches
can grow simultaneously.

At first glance the transition mentioned above shares
many common features with the so-called Hecker transi-
tion observed in ECD. In both cases, dense and filamen-
tary patterns develop at different times. The complexity
of the real experiments greatly exceeds the simple model
described here, and, presumably, other effects like dif-
fusive growth shall also be taken into account in a com-
plete theory. However, some aspects suggest that the
main features may be well described by the present mod-
el. The transition described before is characterized by a
change in the sign of the electrostatic field at the aggre-
gate. If that takes place in the Hecker transition, a
change in the charge of the chemical species being accu-
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FIG. 2. Different patterns grown with p"=I, and several
values of A.

' and p'.
FIG. 3. Same as Fig. 2 but simultaneously attaching 50 par-

ticles at each step.
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mulated near the cathode should also take place. This
conclusion seems to agree with experimental findings,
where a change in color, associated with a change in the
material being deposited (metal oxides are replaced by
metallic ions in going through the transition) has been re-
ported [11]. A similar change in color of the solution has
been identified as a change in the pH, which occurs
simultaneously with the transition [14]. The change in

the sign of the field observed in this work is exponentially
dependent on the distance between the electrodes, while it
shows a much weaker dependence on other parameters.
The sharpness of the transition from dense to ramified
growth depends on the range of values of I in which the
a„,vary from 0 to infinity. For small values of the
screened length (as compared with other typical scales),
this range is small, and we expect an abrupt transition.
Thus, we expect that the transition should take place in a
narrow region mainly determined by the shape and di-
mensions of the system, in agreement with experimental
findings [11]. On the other hand, the screening length
(Debye length) in ECD seems to be rather small, in the
range 10-300 A [16], and therefore, much smaller than
the cell size. Thus, the occurrence of the present transi-
tion in a region not too close to the outer electrode re-
quires that p"»p' (Fig. 1). This implies that, before the
transition, the field near the surface of the aggregate,
which, as discussed above, is opposite to the polarization
of the electrodes, will be very low. Hence this electrostat-
ic barrier can easily be overcome by cations through
diffusive processes. Finally, we note that the importance
of diffusion is illustrated by the fact that ECD aggregates
before the Hecker transition [1 I] are less dense than
found in this work (Figs. 1-3).

We turn to comment briefly on some further develop-
ments along the lines proposed in this work which we are
currently considering. First we discuss the case of an-
tiscreening; as remarked above this case corresponds to
the presence of an ambient (or sources) of particles in

DLA, and might be relevant in ECD as far as ions could
be generated anywhere between the electrodes [14]. A

procedure similar to that described above gives the fol-
lowing expression for the instantaneous growth rate:

(4)

where 6l is the step function. Now the field at the surface
of the aggregate is an oscillating function of /, and, as a
consequence, the growth rate also oscillates. This feature
originates a behavior which is even richer than that found
in the screening case. For instance, a transition similar to
that described above may also take place, although in this
case it occurs for 1)' & P". The present analysis should be
extended to growth in 2D (circular geometry), as most
experiments are carried out in this geometry. Prelimi-
nary analytical studies and simulations indicate that all

the results presented above also hold in the two-di-
mensional case. Finally we note that a finite resistivity of
the aggregate also could be incorporated in the scheme

proposed here: The procedure would consist in introduc-

ing a finite screening length in the aggregate.
In conclusion, we have presented an investigation of the

efTects of screening on growth phenomena in screened
electrostatic fields. Screening strongly increases the

diversity of patterns, giving rise, under certain conditions
and in a very simple way, to a transition from dense to
multibranched growth similar to the Hecker transition
observed in ECD. Although several mechanisms might

be playing a role in this transition, our results suggest
that screening may be a crucial aspect of the problem.
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