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Avalanche Dynamics from Anomalous Diffusion
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Bak, Tang, and Wiesenfeld introduced a sandpile model to study the so-called self-organized critical
phenomena [P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A 38, 364 (1988)]. There were several
proposals to connect this discrete cellular automaton model with diffusion processes. Ne show how one
may interpret the dynamics of this model as a discretized version of an anomalous diffusion equation,
and we study the time evolution of the model off criticality.
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Recently, there has been a great interest in various
models that display self-organized criticality (SOC) [1].
The term "criticality" refers to the power-law behavior of
the spatial and temporal distributions, characteristic of
critical phenomena. "Self-organized" refers to the fact
that these systems naturally evolve into a critical state
without any tuning of the external parameters, i.e., the
critical state is an attractor of the dynamics. Bak, Tang,
and Wiesenfeld [1] (BTW) suggested that there may be
an intimate connection between scale invariance in the
spatial and temporal domains, i.e., between the fractal
shapes in nature [2] and the 1/f' noise [3].

As an illustration, BTW introduced a sandpile model
[1] based on a cellular automaton algorithm. Avalanches
generated by an external perturbation can be observed on

all length and time scales, and the characteristic distribu-
tions obey power-law behavior. Large-scale computer
simulations [4] gave the values of the exponents. Dhar
[5] obtained important results for the so-called Abelian
cell automaton models.

I n the BTW model, the SOC behavior is a feature of
the dynamics of the relaxation processes initiated by the
external perturbations. We show that this dynamics is a

discretized version of a specific anomalous diAusion equa-
tion, ~hose diA'usion coefficient has a pronounced peak as
a function of the state variable. Our guess is that this
last feature is the main ingredient responsible for the
genesis of the SOC state.

Previously, Tang and Bak [6] used a diffusion picture
to argue that in the stationary state a single site excita-
tion must be followed in average by -L'- toppling events
in an I xL two-dimensional lattice. Manna [4] measured
the average avalanche size in the SOC state, and his re-
sults are in very good agreement with the above predic-
tion. Zhang [7] wrote down a relaxation equation for the
correlation function, and gave exact solutions in d ~ 4 di-

mensions. In an attempt to describe the anomalously
large fluctuations in the BTW and similar systems, others
[8,9] studied correlations in systems described by dif-
fusion equations with diAerent nonlinear corrections and
driven by white noise. However, a direct connection be-

tween any self-organizing model and these simple driven
diffusions has not been made. A still open question is

whether these hydrodynamical limits are in the same
universality class as the cell automaton models. Carlson
et al. [10] explained why certain open driven systems or-
ganize to a critical state. Their key result is that the con-
tinuum limit of a certain self-organizing model has a
diAusion coefficient which is singular at the critical point.
The anomalous diffusion described in Ref. [10] is associ-
ated with the collective behavior of many avalanches in

the dynamical equilibrium state. We investigate in this
Letter the dynamics of individual avalanches off critical
ity, and show that it is also governed by an anomalous
diITusion equation.

F'irst, we describe brieAy the dynamics of the original
BTW sandpile model [1]. To each site of a hypercubic
lattice an integer state variable is assigned. A site is

called activated if its state variable exceeds a prescribed
threshold value. At each time step, the state variable of
each activated site decreases by a axed amount, which is

distributed uniformly between its nearest neighbors, in-

creasing the value of their state variable. A variant of
this dynamics was introduced by Zhang [7], where the
state variable is continuous, and an activated site distri-
butes its whole content between its neighbors. It is com-

monly believed that these two models belong to the same
universality class. We are interested in this paper in the
time evolution of avalanches, which are the connected
clusters of sites with state variable near the threshold
value.

Without the threshold condition these dynamics could
be interpreted as discretized versions of a simple diAusion

process (see, e.g. , Press et al. [11]). As the threshold
condition depends only on the local value of the state
variable, it is appealing to look for an anomalous dif
fusion equation with a diffusion coe%cient depending
only on the state variable, whose discretization would give

back the original dynamics. Such a continuum equation
would hopefully a11ow an analytic treatment, providing
new information on the original discrete models. Of
course, such a continuum description cannot reproduce
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where p(r, t) is the state variable which we take to be
continuous and shall call density from now on, D(p) is

the density-dependent diffusion coefficient, and I (p) is

given by

I (p) = D(p') dp'. (2)

Discretizing the Laplacian on a hypercubic lattice to
lowest order in the lattice spacing, and discretizing the
time variable as well, the following dynamics results for
the discrete version of Eq. (I): The change (in one time
step) of the density p at a given site is proportional to the
difference between the value of I (p) at that site and the
average of I (p) over its nearest neighbors. In the case of
normal diffusion, I (p) equals p up to a constant factor
(the difl'usion coefficient).

In order to build in the threshold behavior into the
above dynamics, I (p) should be chosen appropriately.
Namely, I (p) must have the form

I (p) =f(p)8(p —p, ), (3)

where 8 denotes the Heaviside step function, p, is the
threshold value of the density, and f(p) is a coefficient
characterizing the model at hand (the amount by which
the density of an activated site decreases in one time
step). For example, f(p) =const for the BTW model,
and f(p) =p for the Zhang model.

The anomalous diffusion coefficient may be calculated
from Eq. (2): it is the derivative of I (p) with respect to
p. Since the Heaviside step function is discontinuous, we

regularize it in order to get a meaningful D(p) from Eq.
(3). The simplest choice is

Q„„s(p—p, .) =—+—arctan
1 1 a —C.
2 lE

(4)

where e is a small, positive regularization parameter.
The most important feature of the resulting diffusion

coefficient is that it has a sharp pronounced peak at the
threshold value p, . This results in the following qualita-
tive picture. At a given time, one may distinguish three
different spatial regions: a critical region, where p= p„
a supercritical region, ~here p & p„and a subcritical one,
where p( p, . In the subcritical and supercritical regions

the microscopic details of the dynamics, only the large-
scale features. But our object of study is the time evolu-

tion of the avalanches, which are large-scale objects, so
our guess is that the continuum description might prove
useful. We note that, e.g. , the Hwa-Kardar equation [8]
arose from similar ideas, namely, to add nonlinear terms
to the ordinary diffusion equation in order to get a contin-
uum version of the SOC threshold dynamics.

Let us take the most general anomalous diffusion equa-
tion satisfying the above-mentioned condition:

|Ip(r, t) =div[D(p(r, t))gradp(r, t)] =hl (p(r, t)), (I)

the diffusion coefficient is very small compared to that of
the critical region. On the supercritical-critical boundary
the diflusion coefficient grows steeply, and there is a large
flux which enters the critical region. In the critical region

the diA'usion coefficient is very large, thus any inhorno-

geneity disappears "instantaneously. " Consequently, the
inflow flux is transported through the critical region to
the critical-subcritical boundary, where it enters the sub-

critical region. The density at the supercritical-critical
boundary layer decreases until it reaches the threshold
value p, ., when the layer becomes part of the critical re-

gion. As a result, the boundary moves towards the super-
critical region, until this later is completely absorbed by
the critical one. The behavior of the other boundary is

similar; the only difference is that the direction of the flux

is opposite. The critical region grows steadily in this
direction as well. An open finite system organizes itself
into a critical state where the density reaches the thresh-
old value p, . in the whole region, resulting in the "super-
sensitive" behavior where all perturbations relax quickly
(SOC). We stress that we consider the time evolution of
an arbitrary initial state, i.e., the self-organizing process
towards criticality, not only local perturbations in the
SOC state.

The time evolution of the system is determined by two

distinct time scales: In the critical region there is a quick
diffusion process with characteristic time r [, and in the
oA'-critical region there is a much slower relaxation with

time scale r2.. r 1 (&i2. The spreading of the critical re-

gion takes place on a medium time scale r:

(s)

This fact allows us to develop an eff'ective theory describ-

ing the time evolution of the avalanches by using an adia-
batic approximation. In the adiabatic approximation, we

take the limits r [ =0 and r 2
=~. This means that in the

critical region the relaxation process is instantaneous,
while in the oA'-critical region there is no diffusion at all.
In this approximation, we derived first-order ordinary
diAerential equations, which govern the time evolution of
the critical region [12].

We have studied numerically the solutions of Eq. (I) in

one dimension with the regularized diffusion coefficient,
with various initial conditions. We have found that the
time evolution of the critical region is composed of two
different motions: spreading and creeping. The critical
region spreads following a power law,

l(t) —t",
where I is the linear size of the critical region, and the ex-
ponent p =

& . This exponent differs from the "dynamical
exponent, " which relates the linear size of an avalanche
to time in the critical state. The exponent p characterizes
the buildup process of the critical region off SOC. Creep-
ing means that the center of the critical region, defined as
the point where the diA'usion coefficient takes on its max-
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In summary, we have studied an anomalous diffusion
equation obtained as a continuum limit of the BTW and

Zhang dynamics. We guess that in those systems, where
the density-dependent diffusion coefficient has a sharp
maximum at some threshold value, the emergence of
SOC is a generic phenomenon. We have shown analyti-
cally and numerically in the one-dimensional case that
the time evolution of the linear size of the critical region
follows a power law, with exponent 3. Moreover, we

have found that the center of the critical region creeps
continuously, obeying again a power law with exponent

These results are quite universal, insensitive to the
detailed form of the initial density distribution and the
diffusion coefficient, provided the latter has a sharp pro-
nounced peak at some threshold value, and we are far
from the fully developed SOC state. We note here that
recent publications [14,15] show examples where the
diff'usion coefficient has a maximum with respect to the
density. We hope that our work can lead to a better un-

derstanding of the processes by which the SOC state is

built up, and will extend the circle of real systems where
SOC occurs.
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