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Vortex Rings and Finite-Wave-Number Superfluidity near the He A, Transition
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The superAuid response to a perturbation of wave number k is calculated using a vortex-ring theory of
the He A. transition. Rings of diameter greater than k ' cannot follow the perturbation, and this leads
to a finite-size broadening of the superfluid density near T&. The vortex theory provides a new perspec-
tive on the Feynman-Onsager proposal that rotons are vortex rings of smallest size.

PACS numbers: 67.40.Kh, 64.60.Ht, 67.40.Db, 67.40.Vs
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In these equations I is a dimensionless length, I =In(a/
ao), where a is the average diameter of a ring and ao is

the "bare" vortex core diameter (the lattice constant in

the XV model). K, is the observable renormalized cou-
pling constant, the helicity modulus, and is related to
the superfluid density p, at temperature T by K,
=h~

pa mo/-'k Ttt, with m the mass of a helium atom.
The presence of noncircular rings is taken into account in

Fq. (2) using the Flory scaling proposal of Shenoy [2] for
the effective core size a, . ; a,./a =K, with the exponent 0
taken to be the Flory value 0=3/(D+2) =0.6 in D=3
dimensions. Although initially just an ansatz, there is
now more compelling evidence in favor of this value for
the exponent [7]. The iteration of Eqs. (1)-(3) starts at
the scale ao from initial values Ko=K„p, /p, and yo—lr Kp('=e ', where p, is the bare superfluid density from
excitations other than vortices, and C is a constant relat-

The He superfluid X transition is known to be in the
same universality class as the three-dimensional LY mod-
el of magnetism. Recently, a vortex-ring theory [1,2] of
the XY model has been successful in calculating the heli-
city modulus of the spins [3] (a quantity analogous to the

He superfluid density), in agreement with Monte Carlo
simulations [4,5]. In this Letter the vortex theory is ap-
plied to the He superfluid transition. The superfluid
density at finite wave number is calculated by considering
the response of a vortex ring to a spatially modulated
superflow. The formulation in terms of topological exci-
tations allows some new insights into the underlying basis
of the transition.

The vortex-ring theory is based on two simple ideas [61:
(a) The rings are dipoles which orient in the presence of
an external flow such that their net current reduces the
total flow, reducing the superfluid density, and (b) the en-

ergy of a large ring is reduced by the screening eA'ect of
small rings being oriented by the flow of the large ring.
These ideas lead to real-space recursion relations [1-3]
for the A'Y coupling constant K and vortex fugacity y,

8(l/K) I

Bl
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ed to the vortex core energy. In the 3D XY model C is

known to have the value —, [8]. The value of the constant
Ap is determined to be Ap=24. 4 by requiring that the
critical value of Kp match the value known for the XY
model [3,5].

By iterating these equations to length scales up to the
correlation length (=an/K„a power-law phase transition
is found of the form K, —(Ko —Ko, ) ', with the exponent
v in agreement with Shenoy's prediction, v =0.6717. The
correlation length is essentially the diameter of the larg-
est rings being thermally excited. Truncation of the
iterations at a finite length scale leads to a finite-size
broadening of the phase transition, with results in agree-
ment with both Monte Carlo simulations on finite lattices
and with the predictions of finite-size scaling [3-5].

To apply this theory of the LY model to the helium k
transition, it is necessary to determine the core energy of
the helium vortices, which is not a universal quantity.
This is accomplished by adjusting the core energy con-
stant C until the magnitude of the superfluid density in

the critical region T = T~ matches the experimental value

[9], p,./p=2. 40t " ', where t =(T& —T)/Tt, This re-.
quires an assumption about the bare superfluid density

p, , since the recursion relations yield only the quantity

p,;/p," as a function of temperature. From the approxi-
mate solutions of Shenoy [2] for p, /p as a function of p,".

and C, and from more accurate numerical solutions, it

quickly becomes apparent that the experimental critical
amplitude can be matched only with p, /p=1. 0 for values

of C in the neighborhood of & . To get values of p,. /p in

the range of 0.1-0.3 that might be expected from the k-

point scenario of Ref. [I] (where roton excitations were

assumed to be excitations difl'erent from the vortex rings)
would require unreasonably large values of C, an order of
magnitude larger than the XY value. It is concluded that
only phonon excitations should be included in the bare
superfluid density, and since they make a negligible con-
tribution to p, even near Tt„we set p, . /p —=1.0 in evaluat-

ing the renormalized superfluid density. The detailed fit

to the experimental critical amplitude then yields a core
energy constant C=1.03, about 30% smaller than the
value for LY vortices. This is quite consistent with the
experimental results found in two-dimensional helium

films [10], where the core energy constant was measured
to be about a factor of 2 smaller than that for AY vor-
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tices. In this scenario roton excitations must be identified
with the vortex rings of smallest size, those of diameter ap
where the recursion of Eqs. (1)-(3)begins.

With this value for C the helium transition is found to
occur at a critical value Kp, =0.2772352, about 20%
higher than the XY result [5]. This corresponds to a crit-
ical temperature [11]given by physical constants and the
fundamental length scale ap,

Tx=h p, ao/m kttKo,

Inserting the known value T&=2.172 K yields ap=2. 27
A. This result is consistent with the expectation that the
bare core size be of the order of the interatomic spacing
of liquid helium, d =3.6 A, and is also consistent with ex-
perimental determinations of the core size [12]. It is also
quite reasonable for the size of a roton, which is thought
to be a microscopic excitation involving the low of just a
few neighboring atoms [13]. The roton energy at Ti. can
be identified as the energy of the smallest ring, d/ktt
=x Kp, ,CT~=6. 1 K, which compares well with experi-
mental values of 5.8 K from neutron scattering [14] and
7.5 K from Raman scattering [15].

The idea of rotons as a modified form of the smallest
vortex rings was first proposed by Onsager and Feynman
[16], and this concept has been extended more recently
[17]. Although the atomic nature of the liquid will

change the energy and dispersion of the excitation from
that of a macroscopic vortex ring, the only feature needed
for the renormalization scheme outlined above is that the
excitation have a dipole moment that can be oriented by
an applied flow field. Feynman and others have demon-
strated that roton excitations have just this property [18].
The detailed microscopic nature of the rotons does not
affect the present calculations near T& because only the
largest rings control the behavior at the critical point.

The dynamics of the superfluid transition can be inves-

tigated by studying the response of the vortices to per-
turbing low fields, similar to the methods used by Am-
begaokar et al. [19] in two dimensions. The fiow is taken
to have the form v, =v,nexpi(k. r —cot), where k is

oriented to be perpendicular to v,,p, since it is the trans-
verse component that is of interest. For general values of
m and k it is necessary to solve a Fokker-Planck equation
[20] for the altered distribution function of the vortex
rings. A simpler calculation, however, is to take the limit
co 0 and find the wave-number-dependent superfluid
density p, (k), which can be compared with a recent
Monte Carlo simulation [21] of this quantity.

The response of a circular vortex ring to a spatially
varying field can be computed by analogy with the torque
exerted on a current loop in a magnetic field. The ring of
diameter a is taken to be centered in the x-y plane, with
the vortex core located at polar coordinates (a/2, p). The
flow v, p is taken to be in the y-z plane inclined at an an-
gle 0 from the z axis, and k is taken along the x axis.

The torque on the ring is then

N =x2x—p,
h p a
fH 2

/2'
v sing ett;ta/2)cost'sin ydy&'sp

=xg(k) pv, using, (5)

where p is the momentum of the vortex ring (along the z
axis), p =2tr (h/m)p, (a/2), and g(k) =2Ji(ka/2)/
(ka/2), where Ji is the Bessel function. The change in

the energy of the ring is then

BU= ~N~dg= —g(k)p v, p. (6)
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FIG. I. W'ave-number-dependent superAuid density vs re-
duced temperature t. The solid curves are calculated from the
vortex theory [Eq. (7}l. The dashed line is the interpolation
lormula of Eq. (8), and the data point indicates the Monte Car-
lo result at t =0 from Ref. [21].

The physical interpretation of this result is quite simple:
At long wavelengths ka« I the response function g(k)

1, and Eq. (6) is the usual expression for the energy
change in a homogeneous flow field. When the wave-

length approaches the ring diameter, however, g(k) de-
creases, dropping to zero at ka =7.6 and oscillating with

small amplitude about zero for larger k. In this regime
the effect of the flow averages to zero across the diameter
of the ring. Since Eq. (6) has the same form as used in

computing the ring polarizability in Ref. [I] it is straight-
forward to deduce that the susceptibility at finite wave
number p(k) is found from

p(k) = P = I+ " g(k) da, (7)
'" 8p(0)

p., (k) "" 8a

where p(0) =Ko/K, is the susceptibility calculated from
Eqs. (1)-(3).

Calculating p, (k) from Eq. (7) gives a broadened
phase transition, with p, remaining finite at T~. This is

essentially a finite-size broadening, since g(k) cuts off the
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FIG. 2. Scaling plot of (p.;/p)(kao) vs (kao) 't". The
solid lines are the vortex theory, while the dashed lines are Eq.
(8).

pr, . (k) = 1.51 [t + [t -+ (2k(o) '-'] ' '-] ", (8)

where (o =0.118 A is adjusted to match the value at Tx

Figure 2 shows the k dependence of the superfluid den-

sity, plotted in the finite-size scaling form [3,4] of
(p, /p)(kao) ' vs (kao) 'l'. It is only precisely at T,
that p, becomes a linear function of k, shown by the zero

recursion relations at the length scale -k '. The larg-
est rings cannot respond to the spatially varying flow

field, and hence do not contribute to the reduction of the
superfluid density. Using the above circular-ring expres-
sion for g(k) to evaluate p, at T&„ the universal quantity
K„/kao is found to be 0.097. This is close to the early cal-
culation of Ferrell et al. [22] which predicts I/tr =0.101,
but does not agree with the recent Monte Carlo simula-
tion of Cha et al. [21], which gives a value of 0.046 for
this quantity. It appears that the circular-ring approxi-
mation for g(k) is not entirely accurate. It is plausible
that as the probe wavelength approaches, the ring diame-
ter g(k) could be affected by the smaller scale twists and
turns of the actual distorted rings; but in any case the
response must still finally drop to zero for large enough k.
To model this in a fashion similar to the finite-size calcu-
lation [3], an alternative step-function form for g(k) has
been employed, taking g(k) = I up to ka =8.6, and then

zero for larger values of ka. This cutoA' point is chosen to
give agreement with the Monte Carlo results, and is

slightly higher than the zero of the Bessel function g(k).
Figure I shows the results of calculating p, from Eq. (7)
using the step-function form of g, for the values k =0 and
0.04 A '. The Monte Carlo prediction at T& is shown as
the data point, and the dashed line is the interpolation
formula conjectured in Ref. [22],

slope at t =0. It is this dependence on k that gives rise to
the anomalous dispersion and critical damping of second
sound, as first shown in Ref. [22]. The dashed lines in

Fig. 2 are the interpolation formula of Eq. (8), and again
there is general agreement between this form and the vor-
tex results, at least below T~.

In summary, a vortex-ring theory of the He k transi-
tion provides evidence supporting the Feynman-Onsager
proposal that rotons are the limit of the smallest vortex
rings. The vortex theory is able to reproduce the wave-
number-dependent broadening of the transition known
from earlier studies. Although the connection between
finite size and finite wave number has been previously
noted [23], the topological formulation now provides a
clear physical picture of the mechanism involved. It
should now be possible to extend these results to finite
frequencies and study the dynamics of the transition,
such as the critical damping of first and second sound by
the vortices.
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