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Why does a sheet of water flowin over an initially featureless surface spontaneously form a river net-
work'? To address this question, we construct a simple model which enables us to examine the shape and
stability of individual river channels. We compare predictions for the geometry of fluvial channels with

experimental data. In addition, we construct a lattice model which allows us to look at large-scale
f'eatures of river networks and calculate their scaling relations.

PACS numbers: 68.70.+w, 92.40.Fb, 92.40.Gc

If fractals are the geometry of nature, one must still
ask how nature produces them. Branched river networks
are among nature's most common patterns, spontaneously
producing structure over a huge range of length scales
[1]. At the heart of this problem is the question of why
and how individual river channels are formed. This
Letter presents a nonlinear model which describes the
evolution of an arbitrary initial landscape covered by a
distribution of water, and has the goal of understanding
instabilities which lead to the coalescence of the ~ater
into channels and, later, river networks.

Rivers have been studied extensively by a wide variety
of researchers with an equally wide variety of techniques
and goals. Geomorphologists have found scaling relation-
ships among various combinations of basin statistics from
field data, such as drainage density and branching ratios
[2]. Hydrologists have likewise extracted power laws for
channel parameters such as width, depth, velocity, and
slope as functions of total channel discharge [3]. Other
investigators have examined the shape [4-6] of individual
equilibrium channels in erodible material while some
have constructed models for the evolution of an entire
drainage network [7-9]. However, we are unaware of a
previous approach which predicts the shapes spontaneous-
ly formed when water flows over an initially featureless
surface and allows one to answer questions about selec-
tion and stability. We differ from previous authors be-
cause we do not try to find closed equations for height of
soil alone; we treat water explicitly as well. The aim is to
find the simplest model which reveals the essential
features of river formation.

We pose our model in terms of two scalar fields,
b(x,y, t) and d(x, y, t), where b(x,y, t) is the height of
soil above some arbitrary horizontal level, d(x, y, t) is the
depth of water flowing over the soil, x and y are spatial
coordinates, and t is time. It will be convenient to intro-
duce an auxiliary field s(x,y, t) =b (x,y, t) +d(x,y, t)
which defines the overall surface of the land plus water.
The time evolution of the system is given by

Equation (la) gives the time evolution of the soil field.
The first term on the right represents erosion, which is as-
sumed to be proportional to a product of ~ater pressure

P, velocity i, and a constant Pp which indicates the erodi-
bility of the soil. Erosion takes place normal to the bot-
tom surface, necessitating the geometrical factor [10]
[1+(Vb) ]'t-. The second term on the right of Eq. (la)
represents turbulent diffusion and accounts for a redistri-
bution of soil along the bottom due to turbulent eddies in

the flow. Although v may be small, we will see that this
term plays a crucial role in stabilizing river channels.
Conservation of water is expressed by Eq. (lb), in which
the first term on the right is the convective flux of water,
and the second is a spatially varying vertical flux of water
from precipitation. Precipitation is included for generali-
ty but will frequently be omitted in the following analysis.
It should be emphasized that soil is not treated as a con-
served quantity; once leached into the water, it is trans-
ported off to the ocean. Thus, we are working in the limit
where erosion is suSciently slow that the capacity of the
water to carry sediment is never exceeded [11].

Given the profile of the land b and the depth of the wa-
ter d, one must deduce the speed at which the water
moves. The vertical component of the velocity is assumed
to be negligible, and the z dependence of the horizontal
velocity components is likewise neglected. We require the
velocity and pressure of the water to obey three condi-
tions. First, one has Bernoulli's law, P=pgd pi /2. —
Second, for small surface gradients, we want water to
flow downhill according to v- —Vs [12]. Third, for
large velocities, as occur when water is in free fall, we
want the pressure to vanish. The simplest set of equa-
tions obeying these conditions is Eq. (lc). With these ex-
pressions for the velocity and pressure, the system defined
by Eq. (1) is closed.

An important property of this system is that it admits
steady-state solutions, which descend a gradient of slope
a at a constant rate r without changing shape. These
solutions are of the form

Bb P
r [1+(Vb) 'l ' '+ vV. (vdVb),

Bt Pp
(la) d(x,y, t) =d(x),

(2)
ad
Bt

= —V. (vd)+f,P

(2gd ) ' Vs pgd
[1+(Vs) ]' 1+(Vs)

(lb)

(1c)

b(x,y, t) = —d(x) —ay rt . —

Working in the limit a 0, which is appropriate for ac-
tual rivers, defining the characteristic length do=Po/pg,
time to=(do/2ga )'t'-, and expressing all variables in
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I. IG. l. Neutral stability curve in the v-D parameter plane,
where v and D are the scaled dimensionless turbulent diffusion

coeScient and maximum channel depth, respectively. Steady
states above the line are stable while those below it are unsta-

ble. Inset: The time evolution of an arbitrary initial state
which is shown adjusting its width to approach a steady state.

these units, one finds that

r =d' -'[I+(d') ] ' '-+ v d ' d.
|IX Bx

(3)

TABLE I. Scaling relations of width w, maximum depth D,
and mean velocity i as functions of channel discharge Q are
displayed for a variety of empirical investigations, and for the
results of our Eq. {3).

For all values of v& 0 and r )0 this equation admits a
continuous family of physically acceptable solutions of
the form d(x) =r 'i f(x;v, D), wh-ere v=v/r i, x =x/
r-i', indexed by D =D/r i', with D the maximum chan-
nel depth.

Notice that when the erosion rate r is small, the
effective diffusion constant v becomes large. Diffusion
stabilizes channels, and since wide shallow channels des-
cend more slowly than narrow deep ones, shallow ones
should be preferred [13]. More generally, we ask how an

arbitrary initial state evolves into a steady-state solution,
dynamically selecting a particular profile out of the con-

tinuous I'amily of possible choices [14]. If one considers
the problem of an infinitely wide sheet of water of depth
D over a Hat plane, one finds the first unstable mode to
have wavelength X =2zv 2vD/3. However, this wave-

length is larger than the channel width that is actually
selected by time-evolving [15] arbitrary initial states ac-
cording to Eq. (I). By doing a two-dimensional numeri-
cal stability analysis of Eq. (I) about the exact solutions
of Eq. (3), one finds that only for certain values of v;&nd

D is the solution stable [16]. Figure I shows the neutral
stability curve in the v-D parameter plane. Steady-state
solutions which lie above this curve are stable, and those
belo~ it, unstable. An initial profile that lies in the unsta-
ble region moves toward the neutral stability curve as it is

time evolved; a sequence of successive states is shown as
an inset in Fig. l.

Although we have consistently favored simplicity over
realism in our model, it is reasonable to ask how well our
results compare with field data for real rivers. In Tables
I and II, we summarize the results for various exponents
[17]. Channel geometry relations (Table I) for w, D, and
i as functions of the total channel discharge Q, which has
units of volume water per time, agree fairly well with the
empirical results, especially those of Ackers. The scaling
of mean water velocity with channel depth and land slope
is displayed in Table II. The exponents for our model are
analytical consequences of Eqs. (I) and (3). Given that
the exponents from field data are not mutually consistent,
agreement with our model is satisfactory.

The computer time required to study Eq. (I) on a large
scale is formidable. In order to learn about larger-scale
features of river networks„we have abstracted from our
previous work a simple lattice model [9,18] which

proceeds according to the following rules.
(I ) At each site of a lattice, we specify two integers,

one corresponding to the height of land, the other to the
height of water.

(2) A lattice site is chosen randomly, and if the surface
height (water plus land) is lower on a neighboring site,
water units are moved to bring the surfaces as close to
even as possible.

(3) For each water unit transported out, a unit of land

is dissolved away —but only if the land is lower at the
destination site.

(4) Additional water falls on a site as precipitation at
random intervals.

The channel networks developed by the lattice model

Source w —Q" D —Qi i —Q

Leopold and Maddock, Ref. [3]
{downstream)

Leopold and Maddock
{at a cross section)

Leopold and Miller, Ref. [26]
Ackers, Ref. [27]
Present model

b =0.26
b =0.2&

b =0.42
b = —,

'

f=040.
f=041.
f=043.
f=l

m =0.34
m =0.33
m =0.15

I

s

b =0.50 f=0 40 m =0.10.
Manning, Ref. [28]
Lacey, Ref. [29]
Smith and Bretherton, Ref. [7]
Present model

I —a
[ —0 -a]/'

TABLE II. The scaling of the velocity i with land slope a
and channel depth D postulated in Eq. {1c) is compared with

other authors' relations.

206



VOLUME 68, NUMBER 2 PHYSICAL REVIEW LETTERS 13 JANUARY 1992

FIG. 2. Channel network generated by the lattice model of the river evolution equations. This run was done on an initially flat
200x500 square lattice over a time period of 2&10 iterations. Boundary conditions are periodic on the sides, a rigid barrier at the
top, and an outflow boundary at the bottom. The width of the lines is proportional to the time-averaged flow through each point.

described above follow the qualitative stages of network
evolution postulated by Glock [19]: initiation, elongation,
elaboration to maximum development, and abstraction
(reduction as smaller streams vanish due to screening
effects of larger neighbors). The time-average fiow [20]
through the network is shown in Fig. 2.

Smart [2l] has collected data on a drainage network in

the eastern coal fields region of Kentucky and reported
these data using Shreve's link magnitude formalism [22].
To compare with our data, let N„be the number of links

[23], of magnitude u, where the link magnitude is defined

legion')

4
b,

~ ~

by the integer part of the logarithm of the How. Figure 3
shows a plot of [og~o(N„) vs u for Smart's data and for
the average of three separate runs of our lattice model.
There is a similarity between the two data sets, although
neither is exponential to better than 10%.

The models presented here make many definite predic-
tions about the selection and stability of river channels
and networks. However, much remains to be understood.
We need to obtain measurements of the turbulent dif-
fusion coe%cient v in order to make detailed comparisons
with field and laboratory channels. In most cases, realis-
tic comparison will only be possible when we extend the
model so as to conserve soil and allow for its redeposition.
In addition, we hope to derive the lattice model from the
continuum equations, and to find the relation between our
lattice model and others used in pattern formation prob-
lems such as sandpiles [24] and diffusion-limited aggrega-
tion [25].

M. M. is grateful for support from the Sloan Founda-
tion. Computational resources were provided by the Uni-
versity of Texas System Center for High-Performance
Computing. We thank D. Lathrop for suggesting this
problem, and L. Tuckerman for a careful reading of the
manuscript.
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FIG. 3. Comparison of log[ON„vs u for computer-generated
channel network () and for a natural network in Kentucky
(6), Ref. [2ll, where IV„ is the number of links, or stream seg-
ments, of magnitude u. The link magnitude u is defined by the
integer part of the logarithm of the flow.
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