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Orientational Order in Simple Dipolar Liquids: Computer Simulation
of a Ferroelectric Nematic Phase
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Molecular-dynamics simulations are used to show that strongly interacting dipolar spheres can form a
ferroelectric nematic phase. This is the first demonstration that dipolar forces alone can create an orien-
tationally ordered liquid state. It is also the first time that the existence of a ferroelectric nematic phase
has been established for a model fluid.

PACS numbers: 64.70.Md, 77.80.—e, 82.20.Wt

u(12) =uss(r)+upp(12), (I a)

In this Letter we describe molecular-dynamics (MD)
simulations of strongly interacting dipolar spheres. It is

shown that this simple model can form an orientationally
ordered nematic phase and that, furthermore, this phase
is ferroelectric. Although the possibility was first sug-
gested by Born [I] many years ago, to our knowledge this
is the first demonstration that dipolar forces alone can
create an orientationally ordered fluid. To date the only
ferroelectric liquid crystals which have been observed are
chiral smectic-C phases [2]. However, there appears to
be no fundamental reason why phases of other symmetry
cannot be ferroelectric [3-5] and the possible existence of
ferroelectric nematics has been suggested in the recent
literature [4-6]. The present simulations establish for
the first time the existence of a ferroelectric nematic state
as a true liquid crystal phase for a completely Hamiltoni-
an model.

We consider a dipolar soft-sphere model defined by the
pair potential
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perature essentially as described by Kusalik [7], and
indeed we verified our program by reproducing some of
his results. The orientational coordinates of the particles
were expressed in terms of quaternion parameters and the
equations of motion were integrated using a fourth-order
Gear algorithm. Following Kusalik, the reduced time
step /Jt* =At/(mes /e)' =0.0025 (m is the mass of a
particle) was employed in all calculations.

The possible existence of a nematic and/or ferroelectric
nematic phase was monitored by calculating the usual
equilibrium first- and second-rank orientational order pa-
rameters, (P~) and (P2), respectively. For ordinary non-
ferroelectric nematics (Pq)~0, (P~) =0. For ferroelectric
nematics both (Pq) and (P~) must be nonzero. As in pre-
vious simulations seeking isotropic-nematic transitions
[g], the instantaneous second-rank order parameter P2
was taken to be the largest eigenvalue of the ordering ma-
trix Q with elements given by

where

uss(r) =4e(a/r)"

is the soft-sphere potential and

(lb)

where p,' is the a component of the unit vector p;. The
corresponding eigenvector is the instantaneous director d
and the instantaneous first-rank order parameter Pi is
defined by [6]

upp(12) = —3(pl r)(p2 r)/r +p~ pq/r (Ic) 1
N

Pi= —Zu"d . (3)
is the dipole-dipole interaction. Here e and cr are param-
eters characterizing the soft-sphere potential, p; is the di-
pole moment of particle i, r =rq —ri, and r is the magni-
tude of r. It is convenient to characterize dipolar soft-
sphere fluids by specifying the reduced density p* =pa. ,
the reduced temperature T* =kT/e, and the reduced di-
pole moment p*=(p /eo )'t, where p=N/V, N is the
number of particles, V is the volume, T is the absolute
temperature, and k is the Boltzmann constant. Extensive
MD studies of dipolar soft-sphere fluids have been carried
out by Kusalik [7]. However, Kusalik did not look for an
orientationally ordered phase and the dipole moments
and state parameters he considered lie well within the iso-
tropic region.

Our MD calculations were performed at constant tem-
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where the &"'"(12) are rotational invariants defined as in
earlier work [9]. The projection g (r) is the usual radi-
al distribution function. It is also easy to show that in the
nematic phase projections of the form g (r) must obey
the asymptotic relationship

g"'"' (r) —(2m+1)(P„,), r (5)

The equilibrium order parameters are the ensemble aver-
ages of P] and P2.

For the axially symmetric dipolar particles we consider,
the angle-dependent pair distribution function g(12) can
be expanded in the form
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where (P„,) is the mth-rank order parameter. In the
present simulations we have calculated g

" (r) d
2201

g I an

g &rg providing an alternative route to the order param-
eters and additional evidence for the formation of a fer-
roelectric nematic phase.

In order to clearly distinguish fluid and solid phases,
we have calculated the mean square displacement
ir;(r) —r;(0)i ), where r;(I) is the position of molecule i

at time t F.or fluids this quantity will continually in-
crease with time varying linearly at long times according
to the Einstein relationship [8]

2tD =&ir;(t) —r;(0) i'&/3, (6)

where D is the diA'usion coefficient. For solids the mean
square displacement becomes constant rather than con-
tinually increasing with time.

Simulations were performed for a range of densities
with T* =1.35 and III* =3 [10]. Periodic boundary con-
ditions (PBC) as given by de Leeuw, Perram, and Smith
[!I] were applied and the dipole-dipole interactions were
calculated using the Ewald summation method [12]. For
all results presented here, the reaction field dielectric con-
stant e' occurring in the PBC potential [11]was taken to
be infinity consistent with usual Ewald-Kornfeld bound-

ary conditions. We would expect this choice of t.
' to be

appropriate here since the dielectric constants of the
dense isotropic liquids are large and increase rapidly as
the transition is approached. We have also carried out
calculations with e'=225 which is the approximate value
of the dielectric constant estimated from our simulations
at p =0.6. The results obtained were qualitatively simi-
lar to those found with t. '=. In most simulations 256
particles were used but calculations with 864 particles
were carried out at two densities and no significant sys-
tem size dependence was found [13]. The simulations
were begun with the particles randomly oriented on a
face-centered-cubic lattice. Typically, the system was

equilibrated for 40000 time steps and averages were then
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FIG. 2. The mean square displacement as a function of the
reduced time t*. The solid, dotted, and dashed curves are for
p* =0.6, 0.8, and 0.9. The estimated errors are less than 1% for
I* ( 1 and less than 5% for t

* & I.

0.5

accumulated over at least another 100000 time steps.
Dilferent starting configurations (e.g. , all dipoles ordered
in the same direction) were also tried and all liquid-state
results were found to be completely independent of the in-

itial conditions.
The order parameters as functions of density are shown

in Fig. l. It can be seen that both (Pl) and (P2) increase
sharply at two densities, p* =0.65 and p* = 0.87,
strongly indicating that two phase transitions occur [14].
The mean square displacements for p* =0.6, 0.8, and 0.9
are plotted in Fig. 2 and it is apparent that the system is

fluid for p* =0.6 and 0.8 and solid for p* =0.9. Thus the
first jump at p =0.65 we associate with an isotropic to
ferroelectric fluid transition and the second at p*=0.87
with a ferroelectric fluid to ferroelectric solid transition.
The properties of the solid phase will be discussed when a
fuller description of this work is published.

In order to investigate the nature of the ferroelectric
fluid, we have calculated the longitudinal and transverse
pair correlation functions, gll(r11) and gi(ri), respective-
ly. These functions measure positional correlations in

directions parallel and perpendicular to the director and
are very sensitive to any spatial structure [15,16]. The
results obtained gave no indication of any long-range spa-
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FIG. 1. The orientational order parameters as a function of
density. The open circles and open squares are (Pl) and (P~)
obtained with 256 particles. The solid circles and solid squares
are (P[) and (P2) obtained with 864 particles. The error bars
represent one estimated standard deviation and are about the
size of the symbols in the ordered phases.

F16. 3. The projections g
' (r) (solid curves) end g""(r)

(dotted curves) in isotropic and nematic phases. These results

were obtained with 864 particles.
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Flo. 4. The negative of the reduced potential energy as a
function of density. The open and solid circles are 256 and 864
particle results, respectively. The error bars represent one es-

timated standard deviation and are smaller than the circles for
the solid region.

tial structure and clearly showed that the orientationally
ordered fluid is a ferroelectric nematic and has no colum-
nar or srnectic order.

The radial distribution function g (r) also has only
short-range structure in the orientationally ordered phase
and resembles results for simple isotropic liquids. The
projections g" (r) and g (r) are shown in Fig. 3. We
see that in the isotropic phase these functions decay
becoming very small at large separations. In the fer-
roelectric nematic phase they become constant at large r
and we have verified that the order parameters estimated
from Eq. (5) are within 2% of those obtained directly.

In addition to these structural properties, we have cal-
culated the average pressure and potential energy. The
pressure was everywhere positive but within numerical
accuracy it was difficult to clearly distinguish isotropic
and nernatic branches of the isotherm. The transition
was more evident in the density dependence of the poten-
tial energy and the reduced quantity —(U)/Ne is plotted
in Fig. 4. The curve is clearly not monotonic and the en-
ergy decreases and then increases again as we pass
through the isotropic-nematic and nematic-solid transi-
tion regions.

In summary, our simulations have shown that at least
for some boundary conditions simple dipolar spheres can
form a ferroelectric nernatic phase. The fact that this can
be accomplished with dipolar forces alone is perhaps
mainly of theoretical interest since in real liquid crystals
other anisotropic interactions must often dominate the di-
polar contribution. However, the fact that a ferroelectric
nematic phase exists in mode1 systems strongly supports
recent suggestions [4-6] that it may be possible to con-
struct ferroelectric nernatic liquid crystals.
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