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Atomistic Landau Theory of Ordering and Modulated Phases in Cu-Au Alloys
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We present a Landau theory derived from an alloy Hamiltonian based on a quantum mechanical
description of cohesion in metallic systems. This Landau theory, obtained by making a mean-field ap-
proximation, provides an excellent description of the ordering transitions in CuAu, Cu3Au, and CuAu3,
including the sequence of transitions from the disordered to the modulated CuAu II phase to the low-

temperature CuAu I phase.

PACS numbers: 61.55.Hg, 64.60.Cn, 81.30.Bx

The alloys of Cu and Au have been the subject of
numerous experimental and theoretical investigations
[1,2]. These alloys undergo ordering transitions to the
CuAu- or Cu3Au-type structures and modulated phases
appear extensively [1,3]. These features make Cu-Au a
prototype order-disorder system reflecting the full range
of complexity encountered in the phase diagrams of in-

termetallic alloys. Since the stability of alloys is deter-
mined by the electrons that bind the atoms together, it is

a challenge to show that a classical Hamiltonian, based
on electronic structure, can give rise to such diversity of
structure.

In the present work, we start with an atomistic Hamil-
tonian and construct a Landau theory for the Cu-Au al-
loys. The free-energy functional is explicitly calculated
by making a mean-field approximation to the Hamiltoni-
an. Recent Monte Carlo simulations on small systems
using this Hamiltonian exhibited the correct ordering
trends [4]. The construction of a Landau theory extends
the scope of this approach beyond purely numerical ex-
periments to a complete theoretical approach which can
be applied to alloys in general.

The most spectacular achievement of the atomistic
Landau theory is the prediction of a modulated phase
with the CuAu II symmetry in a narrow temperature
range between the disordered and CuAu I phases. The
modulated phase arises because of competing terms in the
Hamiltonian leading to a negative gradient term in the
free-energy functional, an effect that could not have been
deduced from any symmetry arguments. Similarly, the
CuAu I and CuAu II transitions are predicted to be first
order because of a subtle coupling between lattice distor-
tions and alloy configurations which drives the coefficient
of the fourth-order term negative. We also find a pro-
nounced asymmetry between the Cu3Au and CuAu3 tran-
sitions, in agreement with experiments. These phenome-
na depend on the details of the interactions and, although
one could have phenomenologically constructed free-
energy functionals to describe each of these transitions
separately, all the transitions are seen to be simultaneous-
ly described by a Hamiltonian based on the electronic
properties of Cu and Au.

The standard model for the Cu-Au alloy, an Ising mod-
el on a fixed fcc lattice [5], has a long history [2,5-7]. Is-

ing parameters obtained from first-principles electronic
structure calculations [7-9] have indicated a crucial con-
centration dependence of the Ising interactions [8].
Mean-field theories derived from these fixed-lattice mod-
els, including the ones obtained from first-principles cal-
culations, are incapable of providing an adequate descrip-
tion of the observed phase diagrams and it has been as-
sumed, because of the frustrated nature of the fcc lattice,
that improving the statistical model would be the key to
getting the correct phase diagram. Although Monte Car-
lo simulations and the cluster variation method [2,7] are
correct for almost all aspects of the Cu-Au phase dia-
gram [2,5,8], some crucial issues remain unresolved.
Most noteworthy among these are the appearance of the
modulated phases, and the lattice distortions accompany-
ing the ordering transitions. In this Letter, we show that
the microscopic Hamiltonian for the Cu-Au alloys cap-
tures both these aspects of the phase diagram, and does
so even within the mean-fteld approximation.

The important feature is the construction of the Hamil-
tonian from a quantum mechanical description of co-
hesion in metals, without assuming some form for the in-
teractions a priori. An ab initio electronic structure cal-
culation does not lend itself to this procedure since
cohesive energies are calculated only for ordered periodic
solids or the completely random alloy, which necessitates
fitting by an assumed form [8,9] or expanding about the
disordered alloy [10,11]. An alternative approach to the
construction of a classical alloy H amiltonian is the
effective medium theory (EMT) of cohesion in solids [12]
which lies between an ab initio approach and a complete-
ly phenomenological one.

The EMT derived from density functional theory [13]
is a variational approach based on a particular ansatz for
the form of the electron density, which has been shown to
be extremely good in comparison with self-consistently
calculated electron densities [14]. The EMT expression
for the binding energy of the Cu-Au alloys, discussed in
detail in Ref. [4], has two key components, the cohesive
energy E, z(n) and the pr.imarily electrostatic term
E„,(n) [12]. The function E„z exhibits a single mini-
mum at a characteristic electron density which depends
on the atomic number Z, and the atom can minimize its
energy by seeking an environment with this density. The
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embedding density n at a site depends on the alloy
configuration and the interatomic distances. The
configuration can be specified by the Ising variables f(;}
which describe the occupancy of a site i by a Cu or a Au
atom. These are the only variables in a fixed-lattice Ising
model. The EMT Hamiltonian depends, in addition, on
the positions of atoms. For the sake of simplicity, we will

focus on only those changes of the lattice which can be
represented by changes in lattice parameters. This
reduces the positional degrees of freedom to three in-

dependent lattice constants. It is possible to describe the
ordered superstructures and the modu1ated structures of
CuAu and Cu3Au within this restricted space.

The classical alloy Hamiltonian is the EMT binding
energy written as a function of the variables f(;},and the
lattice parameters fa„},p = l, 2, 3:

The summations are over all lattice sites, and the second
summation represents the electrostatic term E„„which is

a measure of the electrostatic interaction of atom i with

the tails of the electron density from the neighboring
atoms, and is constructed to be zero for a pure metal in a
perfect fcc structure [l2]. The function E, z includes
many-body interactions because it is nonlinear in the
embedding density. The cohesive function is primarily
sensitive to the variables fa„}, whereas the electrostatic
term is sensitive to the Ising variables g; [4]. The param-
eters characterizing E,. ~ and E„,. can be determined by
performing self-consistent calculations of an atom in a

homogeneous electron gas. Calculations of ground-state
properties of Cu, Au, and Cu-Au alloys by this procedure
show that although this ab initio EMT gives a good
description of trends in ground-state properties, the abso-
lute values are not in very good agreement with experi-
mental measurements [4]. To obtain the Hamiltonian
which is best suited for studying phase diagrams within

the EMT framework, the parameters were obtained by
fitting to cohesive properties of the pure metals. In addi-
tion, one parameter per metal was adjusted, without

changing the description of the pure metals, to reproduce
the formation energy of CuAu [4]. This EMT Hamil-
tonian provides an excellent description of ground-state
properties such as lattice constants and formation ener-

gies [4], and Monte Carlo simulations were shown to
correctly describe the finite temperature transitions to
CuAu I, Cu3Au, and CuAu3 [4]. These results are
significant, considering that only one ground-state alloy

property and no finite-temperature properties were used

in the fitting.
A mean-field approximation leads to a free energy

which depends on the concentration variables, fc;}
=f(g;)}, and the lattice parameters. The Landau free-

energy functional is constructed by minimizing this free

energy with respect to the lattice parameters for a given
value of the order parameter. The variables c; can be ex-
pressed in terms of the order parameter g and the param-
eters f„as

c; =c+ rtg f„exp(ik„R;), (2)
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FIG. l. (a) Calculated free-energy curves for CuAu at vari-

ous temperatures. Each point represents a calculation. The
solid line shows the free-energy curve for a modulated structure
with q, =2m/IOa, at T=1272 K. (b) Free energy curves for
CuAu ~ith cubic symmetry imposed.

where c is the average concentration, R; denotes the coor-
dinate of site i, and the ordering vectors are k]
= (2tr/a ),0,0), k~ = (0,2tr/ay, 0), and k3 = (0,0, 2tr/a3).

The ordered CuAu structures are described by f~
=f2=0, fq= —. , the Cu3Au structure by f~ =f2=fq

and the CuAu3 structure by fr =f2=f3
We study, in detail, the Landau theory of phase transi-
tions at the three stoichiometric concentrations, and have
not attempted, in this work, to draw any conclusions
about the topology of the complete phase diagram.

The uniform ordered phase, CuAu I, has a face-
centered-tetragonal structure compared to the fcc struc-
ture in the disordered phase. Figure I (a) shows the free-
energy function, F(rt), optimized with respect to the lat-
tice parameters. It is clear that the CuAu I phase ap-
pears through a first-order transition. The numerical re-
sults can be represented very well by a functional form
with a negative quartic term, and no cubic term:

(3)
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CuAu
Cu3Au
CuAu3

0.5
0.5
0.5

1219
1245
640

0
—237
—200

—63
283
160

73
0
0

TABLE I. Parameters for the Landau free-energy functional
of' unmodulated phases: F F—o =a(T T—o) rt +brt3+ urt

+i g . For the modulated phases of CuAu, the coeScients of
the gradient terms were found to be hei(2x/aq) =306kT, and

IfI (2x/a2) =2346k T

a (kT) To (K) b (kT) u (kT) v (kT)
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O
I

0
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0

The coeScients are presented in Table I. The absence of
the cubic term could have been predicted by symmetry;
however, the sign of the quartic term, which is responsi-
ble for making the transition first order, is not derived
from symmetry.

To investigate the role of the tetragonal distortion in

the CuAu phase transition, a similar calculation was per-
formed with the lattice forced to be cubic (all a„equal to
a). These results for F are shown in Fig. 1(b). The
fourth-order term is positive in this case and the transi-
tion is second order. These observations imply that the
coupling to the tetragonal distortion plays a decisive role
in the CuAu I transition by changing the coeScient of
the quartic term from positive to negative and underlines
the importance of including these couplings in describing
phase transitions in real alloys. Such a change in sign
arising from coupling to lattice strain had been conjec-
tured and derived phenomenologically many years ago
[15,16]. As expected for a mean-field theory, the transi-
tion temperatures obtained from the Landau theory are
higher than experiments and our EMT-based Monte Car-
lo results which were very close to the experimental
values [4, 17].

The scenario for the Cu3Au and the CuAu3 transitions
is very different. The transitions are predicted to be first
order because of the cubic term in the free-energy func-
tion. This is dictated by symmetry rather than by details
of the Hamiltonian. The lattice remains cubic in the or-
dered phases. There is a pronounced asymmetry between
Cu3Au and CuAu3, as is evident from the values quoted
in Table I. This asymmetry is also predicted by Ising
models with concentration-dependent interactions [7,8].

To construct a Landau theory of the CuAu II phase,
one needs to examine the gradient terms in the free-
energy functional. This was done by expanding the free
energy in terms of rt~, the Fourier components of rt(i ), for
various modulation vectors q. Since the CuAu II struc-
ture has a modulation along a direction perpendicular to
the ordering direction [3], the first set of modulation vec-
tors was chosen to be along such a direction (say y), and
F(rtq) was constructed for diff'erent magnitudes of q. It
was seen that the coefIicient of the quadratic term, a(q),
is smaller for finite q than for q=0 [cf. Fig. 1(a)], and
has a minimum at a finite q. The free-energy functional
deduced from these calculations and adopting a continu-
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FIG. 2. Plot of S;=1—2c; as a function of lattice spacing,
for the four fcc sublattices showing the appearance of the CuAu
II phase in the Monte Carlo simulations. The temperature is

just below the simulation result for T,."=630 K. The results for
the lattice constants of this structure are a [ =7 37 a u. ,
a2 =7.34 a.u. , a3 =7.01 a.u.

um formulation is

F(ri) =Fn+~tdr[Ia1(T —To)rt lulrt'+ Ivlrt

—hei(|)ri/ay) +If[(a' t)/t)y ) ].
(4)

The parameters appear in Table I. A functional with

negative gradient terms leads to modulated structures
[18], and was constructed, phenomenologically, by
McMillan to explain the CuAu II phase [191. Consider-
ing a purely sinusoidal modulation [19], the free energy
can be minimized analytically. We find a erst order-
transition from the disordered to a modulated phase with
the CuAu II symmetry at T,"=To+42 K, and another
first-order transition from the modulated, CuAu-II-like
phase to the CuAu I phase at T,' = To+26 K. The modu-
lation vector for this purely sinusoidal modulation
remains fixed at q =de/2f =0.25(2tr/a2). This value
should vary with composition since the minimum of a(q)
is expected to depend upon the concentration. The exper-
imentally measured periodicity of the CuAu II phase at
the 50-50 composition is q=2n/10a2. We expect these
quantitative results to change upon inclusion of higher
harmonics. An examination of a(q) for q along the or-
dering direction shows that the minimum is at q=O, and
therefore, only a one-dimensional modulated structure is
stable at this composition. The prediction of the modu-
lated structures is a clear indication that EMT captures
the crucial competing interactions in Cu-Au alloys. Ad-
ditional evidence for this comes from our Monte Carlo
simulations [17], showing ordering into the orthorhombic
CuAu II structure. The variation of the order parameter
t)(i), shown in Fig. 2, clearly demonstrates a long-period
superstructure with a period of 10aq.

The CuAu II phase has been commonly attributed to
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Fermi-surface-driven instabilities [20]. In EMT, details
of the Fermi surface are described by one-electron energy
terms [12], left out of the Cu-Au Hamiltonian since they
are expected to be small [12]. Our results show that the
competition between E,. and E,, leads to the modulated
phase. In the CuAu I phase, the Cu and Au planes are
under strain since the preferred lattice constants of pure
Cu and pure Au are very different. This difference is pre-
cisely what is responsible for the tetragonal distortion.
The strain can be further minimized in the CuAu II
structure. However, the distortion of the Ising order pa-
rameter costs energy through the E„ term. This com-
petition, reflected in the Landau theory through the ap-
pearance of the negative gradient terms, leads to the
CuAu II phase existing in a narrow temperature range.

In conclusion, a mean-field Landau theory based on a
microscopic Hamiltonian has been shown to be remark-
ably successful in describing the ordering transitions in

Cu-Au; notably the disordered CuAu II CuAU I

transitions. This is the first nonphenomenological ap-
proach that has led to the description of this transition se-
quence. Our analysis underscores the need to derive
model Hamiltonians from a microscopic viewpoint, rein-

forces the role of elastic energies in determining phase
stability [8], and suggests that the ftxed lattice Isin-g

model is too impoverished a model to describe Cu-Au al-
loys.
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