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A model for surface growth with some of the features of molecular-beam epitaxy is proposed and in-

vestigated. Particles are deposited randomly on a one-dimensional substrate and the surface relaxes

through diffusion processes, which obey detailed balance. The model undergoes a phase transition from

a rough phase to a grooved phase. Both phases display scaling in space and time, with equal exponents.
We also propose a Langevin equation which should describe this growth process and show that this equa-

tion contains an infinite number of relevant terms.
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During the last few years a number of nonequilibrium
growth models have been proposed and investigated from
the perspective of fundamental statistical mechanics (dy-
namic universality classes, generic scale invariance) and
as possible models for molecular-beam epitaxy (MBE),
vapor deposition, and other growth processes. These
models generally involve deposition of particles onto a
substrate according to rules which couple the local
growth rate to the structure of the existing deposit. In-
variably one finds that the surface of the deposit progres-
sively roughens and, in the long-time limit, attains a
steady state in which the width of the interface scales in a
nontrivial way with the size of the substrate. The pro-
cesses by which the surface relaxes play an important role
in determining both the steady state and short-time prop-
erties of growing clusters. If desorption is the dominant
relaxation process, the growth kinetics seem to be well de-
scribed by the so-called Kardar-Parisi-Zhang (KPZ)
equation [I]. Much less is known if desorption can be
neglected and surface diA'usion is the main relaxation
process. These conditions usually apply to vacuum depo-
sition and MBE [2]. In this Letter we discuss a model in

which relaxation occurs entirely through surface diffu-
sion. We find scaling behavior markedly diff'erent from
that of the KPZ equation and, remarkably, a phase tran-
sition from a conventionally rough steady state to a
grooved phase with broken translational symmetry.

Surface dynamics governed by diA'usion conserves the
number of particles so that in the continuum limit the
normal velocity of the interface obeys a continuity equa-
tion

face diA'usion is given by
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is the Laplace operator in curved space [31 and the noise
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a, h = —D„hhh+ rt, , (3)

with D„=A„cr and (rt, (x,t)rt„(x', t')) = —2kBTA, Ab(x
—x')b(t —t') From (. 3) one easily obtains the exponents
I,"=(2—d)/2 and z =4 which determine the scaling prop-
erties of the width of the interface ((t,L) =L~f(t/L'),
where L is the size of the substrate.

When particle deposition (normal to the substrate) is

included, the interface moves with a mean velocity modu-
lated by a shot noise ri(x, t) with (ri(x, t)ri(x', t')) =2Db'(x
—x')b'(t —t'). In the comoving coordinate system the re-
sulting Langevin equation reads [51

(ri„(x,t)ri„(x', t')) = —2kttTA, hb(x —x')b(t t')—
reflects the conservation law. Power counting in the cor-
responding Martin-Siggia-Rose (M SR) functional [4]
shows, however, that all nonlinear terms in Eq. (1) are ir-

relevant and that the scaling properties of the model are
given by the linear equation

v„(x,t) = —V j(x,t)+tI„(x,t), a, h =A, &g~ + ~,
BP
6'A.

(4)

where rt„ is a noise term, (rt„) =0. The current density j
is proportional to the gradient of the chemical potential

p =bP/bh and is tangent to the surface. The operator V

must be computed in a local coordinate system with axes
parallel to the surface. Tke Ginzburg-Landau functional
may be taken as the free energy of the drumhead model,
9=8oH= fd xtrJg, g=1+(Vh), where tr is the sur-
face tension and h(x, t) the height of the d-dimensional
surface. Therefore the Langevin equation describing sur-

where the conserved noise g, has been omitted because it
is irrelevant in the presence of nonconserved noise. Al-
though the particle beam breaks the up-down symmetry,
the resulting equation is nevertheless invariant under the
transformation h(x, t) —h(x, t). In particular, a pre-
viously proposed term [6] proportional to A(Vh) does
not appear in Eq. (4). This is a consequence of the as-
sumption that deposition does not change the nature of
the diAusion process, i.e., it is still driven by energy
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+g6(h„—h„,) '], (5)

where h„ is the (integer) height variable at site n and
periodic boundary conditions are used. The role of the
coe5cients g4, g6 of the higher-order terms will be dis-
cussed in more detail below. At this point we simply re-
quire P to have a single minimum at h„—h„]=0.

In th.= simulations a lattice site n is randomly selected
and a particle is deposited at that site with a probability

A diffusive move is attempted with probability 1
—r.

The direction of diff usion is chosen randomly and
the move is accepted with probability w„.„,= [I
+exp(PAP,„.„,)] ', where m is a nearest-neighbor site
and hP„.„, is the energy change associated with the
move of the particle. In the limit of deposition rate r =0
this algorithm produces the correct exponents g= —' and

z =4 of the linear theory (3).
Usually the scaling behavior of the width g(t, L)-t~t~=

for to« t «L= and ((t,L)-L~ for t ~ is used to
determine the exponents ( and z. In our model we are
forced to determine ( from the steady-state width of rela-

tively small systems because z is so large that the time
the system takes to reach the steady state is extremely
long. One can also obtain these exponents from the
steady-state correlation function

S(k, t) = lim (ht, (t+t')h t, (t')) =k "s(k=t) (6)

differences and can be described using a surface Hamil-
tonian V [7].

In contrast to the case of pure diffusion (I), the non-
linearities in (4) are important. Power counting in the
MSR functional reveals that Vh has the scaling dimen-
sion (D/D, )'t

q .t- ', where q is an inverse length. AII
nonlinear terms in (4) differ from the linear terms by
powers of Vh. Thus, al1 nonlinear terms are relevant
(marginal) for d & 2 (d =2) and a renormalization-group
analysis should seem to be a formidable task. We note
that even an anisotropic surface tension a =o(Vh) is a
relevant perturbation. At this point it is not known if a
single nontrivial fixed point determines the scaling prop-
erties of the growth process or if the microscopic details
of the model are paramount.

We have performed Monte Carlo simulations for a
one-dimensional model designed to reproduce the scen-
ario described above. In particular, diffusion is driven by
energy changes and obeys detailed balance. The surface
energy is defined through the Hamiltonian of an unre-
stricted SOS model,

/t' =Jg [(h„-h„- ( ) +g4(h„- h„- |)

(= I.2 ~ 0.2, z =3.6+ 0.3, g/z =0.35+ O.OI (7)

which differ from the values of the linear theory g=(4
—d)/2, z =4 obtained by neglecting all nonlinearities in

(4).
In Fig. 3 we show the structure factor for g4=1, g6=0.

In contrast to the simple power-law behavior seen in Fig.
I, S(k), k =2ttm/L, is orders of magnitude larger for
odd values of m than for even m. Clearly S(k) does not
obey the scaling law (6). The behavior of the structure
factor is reminiscent of phenomena like phase separation
[IO]. Translational invariance is spontaneously broken
and the expectation value of the height itself becomes a
nontrivial function (h(x, t;L)) =f(x+xo(t), t;L), where

S(k, L=64)
6 S(k, L=32)

C(k, L=128)
o C(k L—64)

(g =0)

~

ior of the steady-state structure factor S(k) =S(k, t =~)
eliminates some of the finite-size effects due to the large k
modes. This has the additional advantage that, in princi-
ple, simulations for only one (preferably large) system
are needed. The exponent z then can be calculated from
the condition [9] that &(k,t) =S(k, t)/S(k) be a func-
tion of the single argument k-t. The simulations were
performed for two temperatures PJ = I and O.OI and two
deposition rates r =0.01 and 0.1. We do not believe that
the exponents depend on either of these parameters, al-
though this cannot be definitely ruled out because of
finite-size effects.

We first present the results for the discrete Gaussian
model, g4=g6=0. Figures 1 and 2 show the steady-state
structure factor S(k) and the steady-state correlation
function 4&(k, t) from which the exponents ) (respectively
() and z can be determined. We have also calculated g/z
from the early-time behavior of the width. The least reli-
able value is probably the result for g. Because of the rel-
atively small system size (L =64) crossover effects might
inhuence the extrapolation of the small k data. Never-
theless, the Monte Carlo data indicate that the universali-
ty class of random deposition with surface diff usion is
characterized by the exponents

with

ht, (t) =L "g [h„(t) h(t)]e'"", —

h(t) =L 'g„h„, and ) =2(+d. It has been shown [8,9]
that extrapolating the exponent g from the small k behav-

0.1

k

FIG. 1. Steady-state structure factors S(k) for g4=0 and
C(k) for g4=1. The slopes, indicating an exponent @=3.4, are
approximately the same for S(k) and C(k) (r =0.1, PJ =0.01,
g6 =0).

2036



VOLUME 68, NUMBER 13 PHYSICAL REVIEW LETTERS 30 MARCH 1992

0.6—

0.4—

0.2—

0
0

~&~x~

Oxo

Qe
+x

'h

0
0

o t=80
t=160
t=320
t=480
t=640
t=800

8+(
0~~ o

1 2 3 4 5 6 7 8

kt

63

ll
X

O
I[
X

0.5—

0.0

—0.5—

—10-

0.2 0.8 1.0

+ L=128
x

L=32

X

FIG. 2. Reduced time-time correlation function @(k,t) as a
function of the scaled argument kt ' = for several times t show-

ing a data collapse for z 3.6 (L 64, r =0.1, g4 ge=o,
PJ 0.01).
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o

10

xu is, e.g., the position of the inaximum of (h(x, r;L)) and
rellects the Goldstone mode which translates (h(x, r;L))
on the lattice. To calculate (h(x, t;L)) in a simulation we

eliminate this random phase xo by shifting the maximum
of h(x, t;L) to x=0 before averaging. The height func-
tion in the steady state seems to obey a scaling law

f(x;L) =L "g(x/L) as shown in Fig. 4. Finite-size effects
are clearly visible in Fig. 4 and the exponent a=3.6 cal-
culated from the sizes L=128 and 64 is undoubtedly
smaller than the true value. We note that (h(x, L)) is

symmetric with respect to the x axis indicating that the
corresponding Langevin equation is invariant under the
transformation h —h as is the case in Eq. (5). The
breaking of translational invariance can be interpreted as
an instability towards the creation of large slopes in the
interface configuration. The slope is only limited by the
periodic boundary conditions and the surface tension
which suppresses large curvature. This explains the fact
that the wavelength of the height configuration is always
determined by the substrate size. To check that the oc-
currence of the instability is not related to the sign of the

FIG. 4. Rescaled height configuration &h (x,L) & as a function

of x n/L, n =0, 1, . . . , L. The data are rescaled for the small-

er system size L 32 and are shifted to larger values indicating

finite-size eAects and showing that the value of a =3.6 is only a

lower bound [(h(x =0,L =128))=7.85x 10, r 0.1, g4 = I,
g6 =0, pJ=0.01].

coeflicient g4 in (6), additional simulations with g4 = —
4

and g6 =
& were performed. These showed the same in-

stability as for positive g4.
Golubovic and Karunasiri [10] (GK) studied a ID

Langevin equation similar to Eq. (4) with an additional
term v8„(8„h/Jg). This term yields an asymptotic be-
havior corresponding to the model of Edwards and Wilk-
inson [11] (t,"= &, z =2). GK argued that the slope B,h
of the surface profile behaves like the order parameter of
Ising-like systems in spinodal decomposition [12]. Their
argument depends crucially on v being greater than zero
and does not take into account that all nonlinear terms in

(4) are relevant and that changing or omitting terms
might have an important effect on the results. In such a
case Monte Carlo simulations may be the only way to ob-
tain a definite result. We also note that GK do not ob-
serve any real phase separation. On the other hand, our
dynamical model yields a steady state, which is truly or-
dered even in one dimension.

Because of the breaking of translational invariance the
correlation functions S(k, t) defined in (6) are dominated
by the behavior of (h(x, r)), i.e., the correlation functions,

S(k, r) =(h~(r+r'))(h 1, (r'))

= ~(hp)['exp[ —k'&[Axu(r)]')/2[,
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decay with a trivial dynamical exponent 2 because of the
random walk of the height configuration in the steady
state: ([Axo(r)1') =([xu(r+r') —xo(r')]') —r. To com-
pute the true Auctuations, which can be compared to
S(k, t) for g4=0, the contributions of the height
configuration are subtracted and the correlation functions
for g4&0 are defined by

k

FIG. 3. Structure factor S(k) for g4=1 and two system sizes
(r -O. l, g. -O, PJ -O.O1).

C(k, r) = lim &hi, (r + t')h —i, (t')) —(hl, (t+ r'))(h —I, (r'))(~OO

(8)
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Although this subtraction amplifies the statistical errors
the exponents y (respectively g, see Fig. I) and z are,
within the error bars, the same as in the case g4 =0.

We interpret these results as a phase transition from a
state with order parameter (ht, ) =0 to one with (ht, )&0.
In the discrete model (5), the transition is driven by the
control parameters g4 and g6. We believe that there will

be an analogous phase transition in the continuum model
(4), probably generated in this case by varying the anisot-
ropy of the surface tension. Both phases show scaling be-
havior of spatial and temporal correlation functions in the
steady state, remarkably, with the same exponents ( and
z. On the other hand, in contrast to the results of GK,
the early-time behavior of the width for g4&0 does not
show simple power-law growth in any time interval.
Whether or not other correlation functions do is at this
point an open question.

Solid-on-solid models become unphysical if the rough-
ness exponent g~ 1. When the instability is present the
situation is even worse because the height itself diverges
faster than the system size. In the physically interesting
dimension d=2 preliminary Monte Carlo simulations
[13] indicate that the same instability occurs as in d= l.
Although these results imply that the height config-
uration in the steady state is not relevant for real growth
processes, these models provide valuable information on
kinetic phase transitions and on the relation between
discrete and continuum models. Indeed, preliminary nu-

merical integrations of (4) indicate that instabilities simi-

lar to those found in our simulations are present in the
Langevin equation and we will continue to explore this in

both one and two dimensions.
One might also ask which processes prevent the diver-

gence of the surface width in real materials. Desorption
is certainly not exactly zero in MBE experiments and

generalizing the model to allow some evaporation of par-
ticles might define a length scale for grooves on the sur-

face. As far as the continuum model is concerned, a pin-

ning term -cos2xh should be included in the functional
P. Such a term is probably irrelevant in dimension d =1,
but may be important in d=2. This will form the subject

of a future investigation.
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