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Rayleigh Scattering from Column Undulations in a Discotic Liquid Crystal
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Depolarized Rayleigh scattering on a columnar discotic liquid crystal is described. Column undula-

tions and mode quantization allow the scattering to be visible only for two directions of reciprocal space,
and for well-defined light propagation angles. The observed constant angular extension of the scattering
shows that column undulations are not controlled by curvature elasticity, but by an anisotropic 3D solid-
like elasticity. This behavior is probably associated with column entanglement, as recently discussed by
Prost.

PACS numbers: 6 l.30.—v, 62.20.Fe, 78.35.+c

Columnar liquid crystals (CLC) are formed by a regu-
lar packing of parallel columns of disklike rnolecules; the
columns are arranged in a two-dimensional network [I].
For CLC distortions one has predicted [2] two types of
elasticity: curvature elasticity for the columns and solid-
like elasticity for the 2D hexagonal crystal. Mechanical
instability experiments have been made to test this model,
comparing curvature and compression. These experi-
ments [3,4] gave threshold values (and then eA'ective cur-
vature elastic constants K-10 ' cgs) that are anoma-
lously large. Another way to test the elastic behavior of
CLC is to use Rayleigh scattering. Light scattering is
produced by fluctuations in the dielectric tensor s. At
constant density, the fluctuations of e come from the fluc-
tuations in the liquid-crystal "director" orientation. In
nematic liquid crystals there is no positional ordering of
molecules. The curvature elastic energy of angular fluc-
tuations does not depend much on their wave vector q.
Rayleigh scattered light can be observed with comparable
intensity in any direction [5]. In smectic liquid crystals
there is, in addition, a one-dimensional ordering of layers.
Arbitrary q angular deformations of the director imply
layer curvature and compression energy. The minimum
elastic energy is obtained for pure layer undulations, i.e.,
when q is inside the layers. Rayleigh scattered light now

appears concentrated on a cone [6]. In columnar discot
its, angular distortion of arbitrary q should imply curva-
ture from the q[[ component along the columns and solid-
like elasticity from q& =q —q[[. Again, because curvature
elasticity is much weaker than solid compression elastici-
ty for macroscopic distortions, one expects large fluctua-
tions to happen only when q=q[[ is aligned along the
columns. In reciprocal space large Rayleigh scattering
should be observed only in one single direction. A new
problem now comes from the quantization of the distor-
tion modes: Distortion must be zero on the solid boun-
daries of the liquid crystal. For smectics, where Rayleigh

scattering is restricted to a cone, quantization transforms
the cone into a series of discrete directions which always
remain visible. For discotics, on the other hand, quanti-
zation would in general prevent any scattering along the
unique allowed scattering direction. In this work we have
investigated, for the first time, the anisotropic elasticity of
a columnar liquid crystal, using Rayleigh scattering, tak-
ing into account this additional quantization constraint.

Assume there is a CLC sample in between two parallel
glass plates. CLC spontaneously orients its columns per-
pendicular to the plates. In this geometry the scattering
wave vector qll, parallel to the columns, is now perpendic-
ular to the plates. Because reflection and refraction
across the plates conserve the tangential component of
light wave vectors along this interface, we immediately
see that the scattered light, when it exists, must be cen-
tered outside the sample on the transmitted (or rellected)
illuminating laser beam.

Let us first define the light-scattering geometry in the
medium. Let k be the incident laser light wave vector
and k' the scattered one (q=k —k'). k and k' can take
the ordinary polarization (k„,k„') or the extraordinary
one (k„k,'). We call a=(k„,qi) =(k„',qi) the propaga-
tion angle of ordinary light compared to the column. k,
and k,' depend on the angle of extraordinary light propa-
gation p=(k,', qi). We must build a triangle (k, k', qi).
The polarization selection rules in nematics [7] give a
zero cross section for the (k„,k„') and (k, ,k,') con-
figurations. The scattering is depolarized, with the two
allowed (k„k„') and (k„,k,') configurations. Consider, for
example, the (k„,k,') scattering (Fig. I). In the triangle
(k„,k,',q =qi) we must have

q = (n„cosa —n cosP) 2x/k, (I)
n„sina =n sinp, (2)

where the extraordinary index n is given by the usual re-
lationship, n =(sin P)n„+ (cos P)n„. This system
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FIG. I. (k„,k,') light scattering geometry. q and Q corre-
spond to forward and backward scattering. z is the column
orientation.

has two solutions:

30 ~ „60

FIG. 2. Calculated qadi vs a =(k„,z) for A. =6328 A. a„„,cor-
responds to 90' incidence angle in air. The z quantization leads
to discrete values of iqi px/d (forward scattering) and

iQi =rrr/d (backward scattering). (p, r are integers, d is sample
thickness; see text).

q = [n„cosa —n, (1 —n„n„sin a) '/ ]2rr/A, (3a)

for the forward scattering, along the transmitted beam,
and

Q = [n„cosa+n„(l —n„n„sin a) '/ ]2n/X (3b)

qp =prr/d,

Q, =rrr/d

(4a)

(4b)

(p, r integers), Eqs. (3a), (3b), (4a), and (4b) now give
relationships between p, r, and a. For each cell thickness,
there exists a discrete set of angles a~ for forward scatter-
ing and a„ for backward scattering. Rayleigh scattering
can only be observed around the transmitted or reflected
laser beams, for these discrete values of the propagation
angle a~ and a, .

In our experimental setup a 15-mW He-Ne laser beam
0 =6328 A) illuminates the sample with vertical polar-
ization. We transform it to a circular polarization with a
A./4 plate. We select the incident polarization with a
linear polarizer. The sample is placed on a goniometer to
vary the air incidence angle from —60 to +60 . We
calculate a in the medium using the refraction law. Note
that a corresponds always to the ordinary (laser or scat-

for the backward scattering, along the reflected beam.
We plot in Fig. 2, q and Q vs a using [8] n„=l.5 and
hn=n, n„=——0.14. q and Q merge when k„J qs. In
practice, coming from air, we cannot go beyond a „. „
=sin '(n„'). For each value of q and Q there corre-
sponds a unique value of a.

We introduce now the mode quantization. We assume
that the columns do not move at the glass boundaries.
Decomposing their distortions in a Fourier series, qs =q
can only be an integer multiple of rr/d, where d is the
sample thickness, i.e.,

tered) light. We can observe the scattered light behind
an analyzer, on a screen, or by a photomultiplier coupled
with a correlator. The thickness of the sample can be ad-
justed, with mica spacers, from 6 to 80 pm. The sample
used is hexa-n-octyloxytriphenylene (C8HET) which ex-
hibits a discotic columnar mesophase between 69 and
83.5'C [9]. The temperature is fixed at 75'C. We use
the same method as in Ref. [3] to obtain a good homeo-
tropic orientation with grains of a few mm, as checked
under a polarizing microscope. We can move the laser
beam (100-pm-diam) away from the grain boundaries to
get scattering from the bulk and not from visible defects.

We first use an ordinary polarized laser beam. We fix
the thickness to 1=29 pm. For an arbitrary value of a
we observe behind an extraordinary analyzer the extinc-
tion of the outgoing laser beam and no scattering. The
same absence of depolarized scattering is observed for an

extraordinary polarized laser. We change a by slowly ro-

tating the goniometer. For a| =23'+ 0.5' we observe a
depolarized spot of light centered on the transmitted laser
beam, i.e., in the (k„,k,') configuration. Rotating the
laser polarization back to extraordinary, the (k„,k,', )
scattering is also observed. We repeat this experiment in-

creasing the incident angle a. We find depolarized
scattering for various angles a2 =36 + 0.5, a3=47
~ 0.5, and a4 =58'+. 0.5, for both (k„,k,', ) and (k„,k,', )
geometries. To observe backward scattering, we choose a
smaller sample thickness, d =12.5 pm, to increase the an-

gular spacing between modes. Varying the incidence an-

gle, as previously described, we observe depolarized
scattering for the sequence a, =10 + 0.5, a, —] =14
+ 0 5, a, =18 + 0 5, a, — =21 + 0.5'.

For each measured value of p by transmission (or r by
reflection), we calculate the corresponding value of q us-
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FIG. 3. Measured wave vector )q~ vs the order p of the for-

ward scattered spots, for two thicknesses: (a) 29 pm and (b) 78

pm. The straight lines are calculated from q =p~/d.
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FIG. 4. Measured wave vector ~Q~ vs the order r of the
backward scattered spots, for three thicknesses: (c) 12.5 pm,
r=l 18, (d) 11 pm, r =104, and (e) 6 pm, r =57. The straight
lines are calculated from g =ra/d

ing (3a) [or Q using (3b)]. A plot of q vs p (Fig. 3), or Q
vs r (Fig. 4), shows a linear behavior, as expected. The
straight lines represent the expected variation of p or r
times n/d, for corresponding thicknesses d. The good
agreement demonstrates that from the first p =1 forward
scattered mode to the last r =Q/(n/d) =118 backward
scattered mode, the angular distortions of the columns
are quantized.

We now measure the half-intensity diameter b8-q&/
q~~ of the depolarized spot of light. b'8 is obtained by
scanning the phototube pinhole (2&&10 -rad resolution)
through the transmitted or reflected spot and recording
the intensity variation. For arbitrary a, we observe the
diff'raction-limited laser-beam divergence 8'8 —8 x 10
rad. 8'8 increases for the scattering angles a~ and a, up
to a constant value 4&10 rad =2.5'+ 0.5', from p =1
to r =118. This observation is in complete disagreement
with a model of curvature elasticity. In this model, the
discotic texture would undulate at qt along the columns
with curvature energy density 2 Kq[~ p, where p is the lo-

cal tilt and K the bend elastic constant. The width 6'0

defines the compression wave vector q& of the 2D crystal
which has the same energy density as the column curva-
ture. This energy can be written as 2 B&q&u, where u

is the column displacement. As usual, one writes B&
=K/m, where m is of the order of a molecular length.
p appears as Bu/Bz, i.e., w-q~~u. Finally, one expects, as
in smectic materials, a relationship of the form
be=q&/q~~=mq~~. The constant b8 observation means
that the undulation of columns costs a solidlike elasticity,
rather than a curvaturelike one. We call B~~ the corre-
sponding elastic modulus. Writing that, for bO, the two
elastic energies are equal, one gets M=q~/q~~
=(B~~/8&) ' =1/24 independent of q. The existence of a
solidlike elasticity B[~ can be associated with specific de-
fects of the tubular texture [10]. Assume that two adja-
cent columns are entangled on an average distance l. A
tilt y of the columns now costs an elastic energy density

Y' Bgg ——,
' C(m/l) y, where C is the elastic constant of

column compression. Taking [4] 8&—10 cgs and [3]
C—10' cgs with be ——,', , we estimate B~~ —10 /500

-2X10 cgs, i.e., m/l-10 . With m =30 A, l is of
the order of 3000 A. This value is comparable with the

estimated value from previous mechanical instability
threshold measurements [3,4]. To observe the curvature-
like behavior of the columns, one should look at undula-

tions of wavelength shorter than l (ql ) 1). In the

present experiment, even for the largest optical q, one

gets ql (1, and the column curvature distortion is dom-

inated by 3D solidlike elasticity. The discotic materials
behaves as a 3D solid, with a large anisotropy of the elas-
tic constants B~~/B~ of almost 3 orders of magnitude.

Finally, we have not observed any time fluctuations on

the autocorrelation of the photocurrent when looking at
the depolarized light scattered for a=ap or a, . This
means that the observed column distortions are purely
static. Thermally excited fluctuations would be quite fast

with relaxation time g/B~~ (average viscosity rl-I P) in

the ps range, but visible with our correlator of resolution
10 s. Their amplitude is probably too weak, since lirnit-

ed by solidlike, rather than curvature, elasticity.
In conclusion, we have presented the first Rayleigh

scattering observation of column distortion in a columnar
liquid crystal. The depolarized scattering is restricted to
two directions of reciprocal space, corresponding to easy
angular distortions with wave vector along the columns.
We have observed the expected quantization of these dis-

tortion modes, which results in a discrete set of privileged
angles for light scattering. The angular extension of this
scattering is constant over the entire observed optical
range of quantized modes (1—118), which means that, for
macroscopic distortions larger than 3000 A, the columnar
liquid crystal behaves elastically as a 3D solid and does
not show any curvature elasticity, for the time duration of
our experiments. This glassy 3D solid presents anyway a
large anisotropy of elastic constants —500. Our present
results explain the large discrepancy between models and
experiments which compared the solidlike elasticity of the
2D crystal with the column curvature elasticity. "Curva-
ture" constants 5 orders of magnitude too large were just
the manifestation of a 3D solidlike anisotropic elasticity.
It would be interesting to observe directly the postulated
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column entanglement and its relationship with the speed
of growth of the columnar phase. The elastic anisotropy
could also be observed with acoustical waves.
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