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An asymptotic expansion for the electronic energy of H2+ is developed in inverse powers of D, the spa-
tial dimension, and the singularity structure in the D ~ limit is elucidated by analysis of the
coeScients at large order (-30 to 45). For the ground state and several excited states, Pade-Borel sum-

mation yields an accuracy of eight or more significant figures.

PACS numbers: 31.20.Di

Dimensional perturbation and scaling techniques have
recently yielded useful results for several daunting prob-
lems involving nonseparable dynamics or drastic correla-
tions among strongly interacting particles. These include
atomic Zeeman [I] and Stark [2] efl'ects in very strong
fields, correlation energy of two-electron [3-6] and
many-electron [7] atoms, and the virial equations of state
of a dense hard-sphere fluid [8]. The general approach
involves transforming the Hamiltonian so that the spatial
dimension appears only as a parameter, D, which is treat-
ed as a continuous variable [9-12]. Coefficients of per-
turbation expansions in powers of 6=—I /D for energy ei-
genvalues E(B) and other properties can be calculated
exactly and to large order using an efficient recursive
method [13]. However, for Coulombic systems such 6
expansions usually diverge [14,15]. For He(ls'-), the
first few coefficients of the 6 expansion of E(8) decrease
steadily, but beyond fifth order factorial divergence ap-
pears to set in [6]. This behavior is in accord with the
suspected [16] presence of an essential singularity at
6=0, in addition to known first- and second-order poles
at 6'=1.

Here we report a study of the one-electron diatomic
cation, H2 . With the assumption of fixed nuclei, this

system is simpler than He since it involves only two inter-
nal degrees of freedom rather than three. By computing
the coefficients of the 8 expansion for E(B) to —45th or-

der, we have established major features of the singularity
structure and find that Pade-Borel approximants [17] are
well suited to summing the asymptotic expansion. For
the ground-state electronic energy, this method can pro-
vide an accuracy of at least eight or nine significant
figures. For certain excited states, we find even more ac-
curate results by exploiting interdimensional degeneracies
[18]. The energies of these excited states for D=3 are
obtained by simply evaluating our ground-state expansion
at higher dimensionalities.

We use a dimensional continuation of the Schrodinger
equation [9] that generalizes the kinetic energy to a D
dimensional coordinate space but retains the potential en-

ergy in its three-dimensional form. This yields [19]

with
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Equation (3b) displays explicitly the residues a —2 and
a —i of poles at 6'=1, which are a characteristic feature
of Coulombic systems [14,16,20,21]. They result from
the divergence of the expectation values of Coulomb po-
tentials at particle coalescences. The summation over the
E/,:Et, —(k + 1)a ——2

—a —
~

tends to be easier to evaluate
than the original summation [6,22,23].

The residue a —2 can be computed exactly as the eigen-

In accord with the Born-Oppenheimer approximation, the
internuclear distance R is a fixed parameter. The coordi-
nate p specifies the radial distance of the electron from
the internuclear axis and z the projection on the axis,
measured from the midpoint of the nuclei. The dimen-
sional scaling factor, f=D(D —1)/6, is chosen to insure
correct behavior in the D ~ limit [11] and the D 1—
limit [14] and to reduce to unity at D =3. With R =R/f
treated as a dimension-independent parameter, the
large-dimension limit provides a good approximation to
the D=3 intermolecular potential [19]. In the D
limit the derivative terms in Eq. (1) disappear, so the
scaled energy fE in that limit is simply the minimum of
V„.[1-. For 0 large but finite, the electron is restricted to
small harmonic oscillations about the minimum, which
contribute to fE a term linear in 6. Anharmonic com-
ponents of V„g contribute higher-order terms, resulting in

an asymptotic expansion of the energy in the form
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value of a scaled one-dimensional system with the

Coulombic potentials replaced by b functions [20,21]. In

principle, a —
1 could be determined exactly from a first-

order perturbation expansion about 6=1, but here we ob-

tain this residue more simply albeit approximately from
Pade summation [6]. The Et, were computed recursively,

using the moment method [13], to as high an order as
round-off error allowed (up to k-45, in the case of R =1
with quadrupleyrecision arithmetic), for eight values of
R &R„=(—'„' )' =1.29903S, the range in which V,s(D

~) has a single minimum [19].
Figure 1 shows that the ratios ~E/, /Et,

'
~ ~

of successive
coefficients increase linearly with k for the range of R
considered, once the perturbation expansion is carried to
sufficiently high order. Hence the EI, grow as kf and the
radius of convergence of the expansion is zero, implying

the presence of a singularity at 8=0. To examine this

singularity, we construct the Borel function, F(B), ac-
cording to [24]

E(b') =b' + + ~ 'F(Bt)dt
(1 b)'—
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FlG. 1. Ratios of coefficients EI,- of the 8 expansion for vari-

ous values of R. Round-off error in EI, is illustrated by the cir-
cles, diamonds, squares, and triangles, which indicate the orders
at which the accuracy of the coefficients drops to twenty,
fifteen, ten, and five significant figures, respectively.

F(8) =a(b)(bn —b) 't'+P(&), (5)

The expansion coefficients of the Borel function are

Ft, =E//k!, so the ratios ~Fk/Ft, ~~ will converge to a

constant, 1/rn, the reciprocal of the radius of convergence
of the b expansion of F(b). We find from the Borel ra-

tios that ro ranges from about 0.7 at R =0.6 to 0 at R„
where the divergence becomes worse than factorial [15].
The Fk beyond lowest orders alternate in sign, so the

singularity in F(b) closest to the origin is at bn = —rn. If
we assume that this is an algebraic singularity, propor-
tional to (Bn —b), then the Borel ratios ~Ft, /Ft, ~~ will

converge at a rate proportional to I/k. Using the
Neville-Richardson extrapolation of these ratios, we find

that cr & and obtain an estimate for 6'0 that is conver-

gent to about seven significant figures for the case R =1.
A singularity analysis of quadratic Pade approximants
[25] to the Ft, confirms that the closest singularity to the

origin is a square-root branch point on the negative real

axis; the location is quite stable with increasing order and

thereby gives a value for Bo convergent to about one addi-
tional figure. Table I gives numerical results for the
singularity parameters a -2, a —[, and 60.

We thus infer that the Borel function has the form

E(8) =8 + + rt(8)+E(b)
(I —b)' (6)

where

rt(b) =a „e '(b 8t)'t—dt. (7)

rt(8) accounts for the large-order behavior of the 8 ex-
pansion; any singularities of the remainder E(6') are sub-
dominant. In the limit 8 0, the function t!(b) has a
branch point of the form b't tT(b), where t!(8) is a
single-valued function with an essential singularity at the
origin. Since the radius of convergence for the expansion
of E is zero, the standard proofs of Borel summability
[24,27] do not apply. However, we find that the singular-
ities of Pade approximants are consistent with this
analysis. The approximants appear to trace out a branch
cut along the negative real axis while also modeling, by

where a(b) and P(b) are nonsingular for ~b[ ~ ~bn~. Ac-
cording to Darboux's theorem [26], the large-order be-
havior of the 8 expansion of the F(8) is the same as that
for a function with a(8) replaced by an=a(8n). Hence
we construct for E the functional form

TABLE I. Parameters from singularity analysis of the D-dimensional ground-state energy of H2+.

Parameter

a —2

a —
I

bp

R =0.8
—5.411 464478 65
—1.059
—0.474795

Value
R =1.0

—5.048 785 818 35
—0.9830
—0.313841 21
—0.313841 I

R =1.2
—4.743 709 23501
—0.9094
—0.19751661876

Method of calculation

Exact
Pade summation
Quadratic Pade analysis
Neville-Richardson extrapolation
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means of coincident poles and zeros, an essential singular-
ity at the origin.

By virtue of its simpler singularity structure, F(6)
ought to be better represented by Pade approximants
than is E (8), and indeed we find that Pade-Borel summa-
tion [17] of Eq. (3b) yields very accurate results and is

superior to Pade summation. Removing the poles at
6 = I, by using Eq. (3b) instead of Eq. (3a), improves the
results by about two significant figures. Incorporating the
singularity at 8=0 into the approximant, by using Pade-
Borel summation instead of Pade summation, adds about
one or two more significant figures. For a given value of
the scaled internuclear distance R, excited-state energies
are obtained by evaluating the ground-state energy at
higher odd integer values of D, according to the interdi-
mensional degeneracies identified by Herrick [18]. For
example, if we evaluate the ground-state energy at 6=

&

with R=R=1, then we obtain the 2pz„excited state
with R = [D(D —1)/6]R =10/3. Figure 2 shows that ex-
tremely accurate results are obtained for excited states.
Similar results are obtained for R =0.8 and 1.2, although
in both cases the overall accuracy is slightly lower than
for R =1.0. At R=0.8 the accuracy is degraded by
round-oA error in the EI, , while at 1.2 it is degraded by
proximity to the symmetry-breaking point.

Since in our dimensional continuation the scaled R

15

=6R6 /(I —6) is fixed, the limit 6 0 corresponds to
the unscaled R ~. The energy of H2+ as a function of
I/R has a complicated branch point singularity in this
limit [29], attributed [30] to the fact that for R ~ the
electron is localized at only one of the protons, whereas at
any finite R the wave function is symmetric to exchange
of the protons. This link between the large-D and large-
R limits suggests that techniques developed for the I/R
expansion [29,31] may be applied also to dimensional
perturbation theory. The limit b 1 is analogous to the
limit R 0. The expansion for the energy at small R is
known to include logarithmic terms [32], which suggests
that there is a weak logarithmic singularity at 8=1 of the
form (I —8) log(l —8). This singularity is not detected
by the Pade analysis of the remainder sum in Eq. (3b).

In a similar treatment in progress for the two-electron
atom, we have found qualitatively similar dimensional
singularities. However, the Borel function appears to
have a complex-conjugate pair of branch points slightly
displaced from the negative real axis. Expressing the ex-
pansion in the form of Eq. (3b) and computing Pade-
Borel approximants for the remainder again appears to be
a very effective summation method.

We thank John Loeser, Tony Scott, and Don Frantz
for enjoyable discussions, and Stella Sung for computa-
tional help. This work was supported by grants from the
National Science Foundation and the Office of Naval
Research, and by a Cray Research and Development
grant.
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FIG. 2. Accuracy of summation approximants for the elec-
tron energy F. as a function of the order k of the 8 expansion.
The solid curves show the Pade-Borel summation of Eq. (3b)
for four eigenstates with R = 1, which corresponds to D
=3,5,7,9. The dashed and dotted curves show the Pade sum-

mation for the lscr~ state, the former using Eq. (3b) and the
latter using Eq. (3a). The number of accurate digits is defined

as —log i ol (E;„t,rex E',;;i)/E,.„. „.i ~, with E;„;& calculated by

conventional methods [28].
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