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Vortex Solutions in the Weinherg-Salam Model
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We show that the Weinberg-Salam model has vortex solutions similar to semilocal strings for all
values of the parameters. The stability of the solutions under small perturbations will depend on the pa-
rameters of the theory and, in particular, on the ratio of the Higgs boson mass to the Z boson mass.
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and 1(t is a complex doublet.
While the most direct way to exhibit the vortex solu-

tion would be to show that it satisfies the Euler-Lagrange
equations of motion [3], it is not the most convenient.
Here, instead, we will demonstrate the validity of the vor-
tex solution by showing that it extremizes the energy. As
we are interested in static solutions that have translation-
al invariance in the z direction, we can set the zero and

It is generally believed that the standard electroweak
model of Weinberg and Salam [1] is free from topologi-
cal defects. The reason is that the first homotopy group
of SU(2)LxU(1)y/U(1), m can be shown to be trivial.
However, this does not mean that the model is free from
nontopological defects and it is the purpose of this Letter
to exhibit one such defect.

A hint that there may be defects in the Weinberg-
Salam model comes from Ref. [2] where it was shown

that the symmetry breaking SU(2)sl b 1
x U(l )1

U(1)gl b„l admits vortex solutions known as "semilo-
cal" strings. But this is precisely the Weinberg-Salam
model with the SU(2)L charge (g) set equal to zero.
Here we ask the next logical question: What happens if g
is nonzero?

In what follows, we shall first show that the semilocal
string leads to an exact vortex solution even in the case
when gWO. We then examine the question of stability
and argue that the solution is stable to small perturba-
tions for large values of the Weinberg angle and small

values of the Higgs boson mass. We plan to investigate
the stability of the solution in other regions of parameter
space in a separate publication [3].

The Lagrangian for the Weinberg-Salam model (ig-
noring the fermions) is [4]

L =Lt(r+Ltt+Lt, —V(P),

where

third components of the vector fields to zero and confine
our attention to the x-y plane. Then the energy (per unit

length) following from (I) is

F. = d x[4 G(JG(~J+ 4 Ftt(JFtt(J

+ (D y) '(DJy)+a(y'y rt'/2) '],—
where i,j=1,2.

The vortex solution that extremizes this energy func-
tional is

0
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and dJ—= (t)J+i —,
' aT'ZJ) with a—= (g +g' )

Now let us assume that p(, W', and A are infini-

tesimal. Then, on discarding terms of cubic and higher
order in these infinitesimal quantities, the energy integral
can be written as

E =E., +E,+Eg,
where the semilocal string energy is [2]
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and A =0=W' (a = 1,2). Here

Z—=cosOu W —sinOtrB, A=—sinOtrW +cosOu B, (8)

and the subscript NO on the functions f and A [in (7)]
means that they are identical to the corresponding func-
tions found by Nielsen and Olesen [5] for the usual
Abelian-Higgs string. The coordinates r and 8 are polar
coordinates in the x-y plane and tanOu =g'/g defines the
Weinberg angle. The integer m is the winding number of
the vortex. In what follows, we shall restrict ourselves to
the case m =1.

To see that the solution described above indeed extrem-
izes the energy, let us write
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the contribution from the p current and W' interaction is

E, = . d xcosOii Jj W~ (a =1,2),

J;= ,' i—a—[y'r'd, y (—d, y)'r 'y],
(i3)

(i 4)

and the energy in the W and A bosons is

d~x[ —,
' yW'xW VxZ+ —,

' tVxW'+yW xZt + —, tVxW +yZxW't + —,
'

g f'(W ) + —,
' (VxA) ] (15)

where y—=gcosO&. It may be remarked that the f and Z
fields in (15) are the unperturbed fields of the semilocal
string since we are only keeping up to quadratic terms
in the infinitesimal quantities. Also, note that the cur-
rent JJ is first order in the perturbation p~ because
(o, i)"(o,i)'=o.

A comment about the sernilocal energy is essential at
this stage. In Refs. [2,6] the system that was considered
was almost identical to the one given by the functional in

Eq. (12). The only dilference was in the matrix multiply-

ing the gauge field inside the covariant derivative d~. In
the semilocal model, this matrix was the identity matrix
whereas here it is the matrix T' defined in Eq. (10). This
slight alteration will not make any difference in the ex-
istence of the vortex solution but might have some conse-
quence for its stability.

The semilocal energy E,, has been shown [2] to be an

extremum for the solution given in Eq. (7). To see this

quickly, note that p~ only appears in quadratic and higher
order in E, and hence p~ =0 extremizes E,. Once we set

p~ =0, the energy functional E, is identical to the energy
functional for the Abelian-Higgs model where it is well

known that vortex solutions exist [5]. These vortex solu-
tions are precisely those given in Eq. (7).

The functional E, is extremized by P~ =0 and W'=0
since it is of quadratic order in these infinitesimal quanti-
ties. Similarly, E~ is extrernized by the solution in Eq.
(7) since this too is of quadratic order in the variations.
This shows that, if we were to vary E with respect to the
fields, we would find an extremal value for E when
W„' =0=W„=A„and p and Z are given by Eq. (7).
And with these values of the fields, the energy of the
configuration is simply the energy of the Nielsen-Olesen
solution found in Ref. [2].

This completes our proof that the semilocal vortex
solution together with W„' =O=W„=A„provides an ex-
tremum of the energy in the Weinberg-Salam model for
all possible values of the coupling constants and all possi-
ble values of the Higgs boson mass. (In Ref. [3], we will

demonstrate the solution directly from the equations of
motion. ) We now discuss the stability of the vortex to
small perturbations.

We will first show that, for a range of parameters, the
vortex solution described above is separately stable to
small perturbations in the Higgs field and in the W and A

fields. Then we will argue that a range of parameters ex-
ists such that the solution is stable to all perturbations.

Hindmarsh [6] has shown that the semilocal solution is

p—= 8X/ a~ 1. (i6)

In our case, this translates into the existence of stable
solutions that minimize E,~ (E,~

is E, with Oir =z/2) pro-
vided

mg mg, (i7)

and A=0.
The behavior of perturbations depends crucially on the

profile of the vortex via the Z and f appearing in (15).

where mg and m~ are the Higgs and Z boson masses, re-

spectively.
The case with m~ =mz leads to neutrally stable semi-

local solutions [6] and so one can find perturbations such
that B'E,~=O. However, when mg &m~, the semilocal
solution is stable to small perturbations and BE,-~&0
where we disregard the zero modes corresponding to glo-
bal group transformations and spatial translations. This
result has also been confirmed in recent simulations of
semilocal string formation [7].

As pointed out above, the functional E, in Eq. (12) is

slightly different from the functional E,~
considered in

Refs. [2,6] and so the results of the stability cannot be
taken over directly from Ref. [6]. However, the argu-
ments given by Hindmarsh indicate that even the func-
tional E, in Eq. (12) will be minimized by the vortex
solution provided we have a small enough P. The argu-
ment runs as follows: By developing a nonvanishing p~,
the potential term in E, may be reduced. However, at
the same time, the gradient terms increase. Since the po-
tential term is proportional to p, a small enough p ensures

that any change in the gradient term is more important
than the change in the potential term. Hence, E, will be

a minimum when P is small enough. (In the case when

8~ =z/2, this "small" value of p turned out to be 1.)
We now want to show that E~ in Eq. (15) is mini-

mized by the vortex solution [8]. We have considered ar-

bitrary perturbations of the fields and the only ones that
can possibly lead to instabilities are found to take the fol-

lowing form:

h)(r)
W ' =f~(r)cos(nO)e„+ sin(nO)eq,

hz(r)W~= —fq(r)sin(nO)e, + cos(nO)eg,
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Therefore we need to know the equations satisfied by Z
and f. If we write v ——+a 1

——v f =0,a
2

(22)

Z= cg,
v(r) .

r
(2o)

the functions f(r) and v(r) satisfy the coupled equations

af"+~—
1
——v —21(, f —" f=0, (21)

r 2 r 2

with f rl/J2, v 2/a as r ~ and f 0, v 0 as
r 0. (Primes denote derivatives with respect to r.)

Now we insert Eqs. (18) and (19) into Eq. (15). For
n&0 this yields

[—y(f(h2 —f2h()('+ 2 g'f'[r'(f('+f2)+h('+h2]+ 2 [nf(+ yvf2 —hI]'+ 2 [nf2+ yvf(+hl['] (23)
r

For n =0, there is an additional factor of 2 and we should understand that all the 0 dependence in Eqs. (18) and (19)
has simply been dropped. In this case it is possible to combine the various terms in Eq. (23) to get

2 2
fO t t

Ew =— —yvf(+ h2 ——h2 + yvf2+ —h (
—h ( +r/(((r)(h ( +hq)+ (VX A)24 r p

g2f 2[r 2(f2 gf 2)+h 2+h 2] (24)
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t tt
$1 gl
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I PV

d~z
dr

(25)

E(v=Eg+h[(h(+hp)/2;y]+h[(h2 —h()/2; —yl, (26)

where Bz is the Z magnetic-field strength of the string.
Since the magnetic-field strength of the string is mono-
tonically decreasing as we go away from the center of the
string, /((r)~0. Therefore, all the terms under the in-

tegral in Eq. (24) are positive. This shows that the solu-

tion is stable against cylindrically symmetric perturba-
tions.

We next turn to the n&0 case. Now the calculation is

considerably more tedious but the final result for E~ may
be written as

only be possible numerically. Here we will show that
there exists a range of parameters for which both A(r)
and S(r) are non-negative functions and hence A[);y]
mP

The function A(r) is clearly non-negative. To check
the positivity of the function S(r), it is sufficient to check
it at the origin since this is where the instability is most
likely to occur. [As r gets large compared to the width of
the string, S g ri /2&0. Negative values of S can
only occur in the region within the string, that is, in the
region of small r. This may also be seen directly from
Eq. (15) since ~VX Z~ is maximum at r =0 and decreases
exponentially fast as we go away from the center of the
string. ] Then, using Eqs. (21) and (22) and the asymp-
totic values of the functions f and v near the origin,

where the integrand in Ef is a sum of squares of various
combinations of the functions f( and f2,

~[g;yl =— "[W(r)g'+S(r)g']2" r

f=(ri/J2)for+ .

a ~'0
2

~' i 4((r)=— r + r +
2 2! 4!

(31)

(32)

dr $8(,
A(r) =g2r2f ~//D(r),

(27) where vo,fo & 0, we find

(28) $(r) = ,' g ri for (I + I/n) (r —0), (33)

and

$(r) =g 2f2 — y —yr
( v')' d v'(n+ v)

D dr rD
(29)

where the two signs correspond to the last two terms in

Eq. (26). Clearly S(r) is positive near the origin for
n~ 2. For the case with n =1, we have to find S(r) to
order r:

with

D(r) =(n+ yv) +g r f (3o)

To determine if A[(;y] is non-negative we must solve the
eigenvalue problem associated with the operator 6 and
find out if there are any negative eigenvalues. This will

~+2g 2

S(n = I ) = (1 —18cos 8(v)r (r 0) . (34)
2

Therefore if sin 0(v& —',„' =0.94 then S(r) ~ 0 and the
vortex solution is stable to perturbations in the W fields.

Note that the condition S(r) ~ 0 is a sufficient condi-
tion for the positivity of E~. So we expect that E~ will
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also be positive for values of sin 0~ somewhat less than
0.94. Also note that for large sin 0&, E&=0 if and only
if %"=0.

This shows that, if we consider the change in the ener-

gy of the vortex solution when the fields are varied, we

will find SE, ~ 0 and bEir ~ 0 provided P is small and

sin 0~ is large. This shows that the vortex solution is

stable to perturbations in the Higgs and Z fields and, sep-
arately, to perturbations in the W fields (because in these
cases E, =0).. We now wish to discuss the case when

both the Higgs and W fields are perturbed simultaneously
and E, &0.

Let us consider the energy functional E in the limit
that sinO~ 1. In this limit, we find

E E,i+e d, x JJWg+Eu t„„+O(e ), (35)

where e=tr/2 —
Ou 0 and Eu t„„„is E~ [Eq. (15)] with

y set equal to zero. Now, if we consider perturbations in

pi and Wj', the change in E,iand E@. t„„„is given by

6E,i =O(e ), & 0, SEu t„,=O(e ) & 0, (36)

for P & 1 while the change in the second term in (35) is

clearly O(e'). Therefore, for small enough e, we have
BE ~ 0 and the vortex solution is stable.

"Zero modes,
" such as global SU(2) transformations

on p in E,iand also .W'=VF' in Eu t,„„require special
attention since, for these, BEs~ =0 and BE~I„„=0and it
would seem that BE can be made negative via the second
term in (35). The best way to resolve this issue is to real-
ize that, for example, %'=VF' can be transformed into
W'=0 (to order e ) by an infinitesimal gauge transfor-
mation. This eliminates the second term in (35) and we

are left only with positive contributions to E [Eq. (36)].
Similar considerations apply to the global SU(2) trans-
formation of p in E,i. ,

How can we understand the stability of the vortex solu-

tion? One way is to think of the Weinberg-Salam model

as a two-parameter family of models. One of the param-
eters is P and the other is Oii. ln this two-parameter
space, the line segment Hu =tr/2, 0 & P ~ 1, gives stable
vortex solutions that have been called semilocal strings.
Further, the semilocal string solution gets more stable as
the parameter P is decreased from unity. (The end point,
P= 1, is where the strings are neutrally stable and is the
border between stable and unstable semilocal strings. )
Hence, by continuity, the solutions must be stable for
parameters in the neighborhood of the line eu n/2,

0&P & 1.
To summarize, we have shown (i) the existence of vor-

tex solutions in the Weinberg-Salam model for arbitrary
values of the parameters, and (ii) the existence of values
of the parameters such that the solution is stable to small
perturbations.
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