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The Einstein theory of gravitation breaks down at very high curvatures. We propose a modification of
the theory at Planck curvatures for which all isotropic cosmological solutions (even including matter) are
nonsingular. All solutions asymptotically approach de Sitter space, a solution with limiting curvature.
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As was shown by Penrose and Hawking [I],under cer-
tain reasonable conditions the space-times in general rela-
tivity are singular in the sense that they are geodesically
incomplete. The two most important examples of singu-
larities are the big bang singularity of cosmological mod-

els of the Universe and the singularity at the center of a
black hole.

The crucial assumptions which enter the proofs of the
singularity theorems are, first, the universal applicability
of the Einstein equations and, second, the weak energy
dominance condition [1]. These theorems do not tell us

anything about the nature of the singularities. However,
based on some well-known black hole and cosmological
solutions, it is rather natural to assume that some of the
curvature and energy-momentum tensor invariants be-
come infinite at the singularity (for singularities reached
on a timelike curve in a globally hyperbolic space-time it

can in fact be proven that the Riemann tensor becomes
infinite [2]). But, if this is the case, then the applicability
of the main assumptions used to prove the singularity
theorems becomes questionable. Most importantly, the
Einstein theory breaks down at high curvatures, as can be
seen, for example, from perturbative calculations of the
effective action [3]. Moreover, if string theory is the
correct theory, then the Einstein action is just an effective
theory valid at low energies.

It thus seems clear that the Einstein equations must be
modified at high curvatures. We may then hope that the
singularity problem which has sometimes been viewed as
a "crisis in physics" [4] can be solved in some new theory
of gravitation. The most plausible candidates for such a
new theory are quantum gravity and string theory (for a
first attempt at a string cosmology without singularities
see, e.g. , Ref. [5]). Unfortunately, at the present time it
is not known what these theories mean beyond their per-
turbative content. It is unlikely that the fundamental
problem of singularities can be solved using perturbation
theory. Thus, we must guess the form of a theory
without singularities based on some new physical princi-
ples.

A natural hypothesis is to assume the existence of a
length lf, fundamental in the sense that no length I & lf
can be measured and all physical observables must be
smeared out on a scale lf. There are well-known exam-
ples, such as special relativity (where v ~ c) and quan-
tum mechanics (where hphx~ h/2), in which the as-

sumption that some physical quantity is bounded leads to
a new theory.

Since the third fundamental constant, the gravitational
constant G, has not been exploited in the above-
mentioned context, it is rather natural to conjecture that
the principle I ~ lI-(GAc )' could lead to a new

theory. Since the gravitational constant is of the same or-
der of magnitude as the string theory constant, we may
hope that the limiting length is already realized in non-

perturbative string theory (for an indication of the ex-
istence of a limiting length in string theory see, e.g., Ref.
[6]).

If there is a fundamental length lI-lp~, then it follows
from dimensional arguments that all curvature invariants
(not just the fourteen algebraic invariants) must be
bounded [7]:

IRI & I/IA, IR„,R""I & I/lpi,

JR„„~R""s(& I/Ip6&, . . . .

In this case, there would be no singularities.
The purpose of this Letter is to show how to modify the

Einstein action in order to satisfy (I) and obtain a theory
in which all solutions for an isotropic universe are non-

singular. As the reader will see, the considerations can be
generalized to an arbitrary geometry. We believe that
the theory which we will construct is reasonable and
could arise as an effective theory in some more funda-
mental models such as string theory or quantum gravity.

We shall consider a classical local theory since it is the
simplest model. However, if the problem of singularities
can be solved at this level, we may hope that the problem
can also be solved using similar techniques in quantum
generalizations of the theory, and also in models includ-

ing all possible nonlocalities.
Limiting curvature hypothesis. —Even if some of the

low-order curvature invariants (1) are bounded, this does
not imply that all higher-order invariants vanish. For ex-
ample, we could have )R„„R""~& I/Ip~ but nevertheless
~R„„.sR"' ~~ ~. In this case there would also be a
singularity. In general, it is a formidable task (if it is
possible at all) to construct a theory in which an infinite
set of invariants is bounded in an explicit manner. How-
ever, we can reduce the problem by introducing the limit-
ing curvature hypothesis (LCH) [7,8] which states that
(i) a finite number of invariants are bounded (e.g. ,
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(R~ ~ I/Ip~ and (R„,R"'( ~ I/Ip~), and (ii) when these
invariants take on their limiting values, any solution of
the field equations reduces to a definite nonsingular solu-
tion (e.g. , de Sitter space), for which all invariants are
automatically bounded.

If the limiting space is de Sitter, then C =0 (where C
is the Weyl tensor). Hence, when applied to a cosmologi-
cal model the LCH encompasses Penrose's "vanishing
Weyl tensor conjecture" for the initial state of the
universe [9]. For an isotropic universe, the LCH implies
that there are no initial and final singularities. A de Sit-
ter phase is the initial and final stage of the evolution.
(For speculations on how it is possible to have no con-
tradictions with the second law of thermodynamics see
Ref. [10].) When applied to black holes, the LCH im-

plies that instead of a singularity there is a de Sitter
space inside the Schwarzschild horizon, which can in turn
spawn a new Friedman "baby" universe [8].

The purpose of this Letter is to describe a theory which

encompasses the LCH in a natural manner. In order to
achieve this goal, we start with a modification of the usu-

al Einstein action for the gravitational field and matter.
We assume that the true "effective" or fundamental ac-
tion for the gravitational field includes higher-order cur-
vature invariants,

S= F(R,R„,R"',C„,p C"'~, . . . )v —gd x, (2)

and at low energies reduces to the Einstein action. In this
simple model, we do not consider nonlocal terms and pos-
sible modifications of the matter part of the action (see
Ref. [11] for an attempt to modify only the matter sec-
tor). However, since we are able to construct a realiza-
tion of the LCH, we can on that basis justify neglecting
nonlocal terms in this model.

Note that modified actions of the form (2) arise in

many contexts, e.g., when considering the effective action
for the gravitational modes of string theory [12], when

quantizing matter fields in a nontrivial background
metric [13], or when attempting perturbative quantum

gravity calculations [3].
The gravitational action (2) leads to a higher deriva-

tive theory with many additional solutions. In general,
the singularity problem for this kind of action will be
worse than for Einstein gravity, since even without matter
these theories admit a lot of singular solutions. However,
we shall construct a theory for which, even in the pres-
ence of matter, the LCH is realized and hence all solu-

tions are nonsingular.
Theory. —To understand why it is possible to construct

a theory in which the LCH is realized, it is useful to con-
sider well-known theories with bounded physical quanti-

ties such as special relativity and the Born-Infeld theory
[14].

To express the bounds on physical quantities in an ex-
plicit manner, it is convenient to rewrite the actions of
these theories by introducing a nondynamical scalar field

p [)5]. For example, the action for a point particle in

special relativity may be rewritten as

S =m [ —. x +ax —V(p)]dr, (3)

with potential V(w) =2m /(I+2+). Varying with respect
to p yields the constraint

avx = =1-
Bp

(4)
(I + 2&)'

from which it is obvious that x is bounded (x ~ 1). In
fact, solving the constraint equation for p in terms of x
and substituting the result into (3) we obtain (up to a
constant) the standard form of the action for special rela-
tivity.

In the following, we shall generalize the above pro-
cedure to gravity. In order to impose bounds on a finite
number of curvature invariants I~, . . . , In in an explicit
manner, we rewrite the action (2) in the form

n

R+ g v; f;(I; )+ V(v (, . . . , v, )
16zG " i=I

&&a gd x, (5)

where p; are additional nondynamical scalar fields and f;
are given functions. In fact, any nondegenerate action
(2) can be rewritten in the above form [10],provided that
the potential V is chosen appropriately. We will choose a

potential V(p~, . . . ,p„) which ensures that the bounds on

I ~, . . . , I„are automatically imposed.
To concretize the consideration, we will demonstrate

how to construct the action for a theory which encom-

passes the LCH in the case of a spatially flat, isotropic
universe.

For an isotropic universe, the Weyl tensor C vanishes.
To realize the LCH it proves sufficient in this case to im-

pose bounds on the two simplest curvature invariants
I ~

=R and I2=4R„,R"'—R . Note that I2~ 0 for any
spherically symmetric metric and that (given that C van-

ishes) 12=0 only for Minkowski and de Sitter universes.

Thus, to ensure that the asymptotic solutions approach de
Sitter space it is sufficient to have I2 0 for all solutions

as the limiting curvature is approached.
To obtain bounded curvature we can impose con-

straints on some combination of I] and I~ similar to what

!
was done for special relativity. Thus, for an appropriate
choice of the potential V(p~, p~), a theory with action

fO

16zG " [R+&)f((I, )+&pfp(l~)+ V(&i,&2)]~ g d

can satisfy the LCH.
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The model. —The simplest of the actions of type (6) for which the LCH can be realized takes the form (see Ref. [10]
for details)

(I+pi)R — @2+ p) (4R„,R"' R—)' + V((p))+ Vp(vp) v g d x.
16xG " Viz

(7)

In this theory, Minkowski space is stable against small
inhomogeneous fluctuations and there are no tachyonic
modes. Note that there is only little freedom in the
choice of this action. Even small deviations from (7)
yield theories with many singular solutions.

It is worth pointing out that if we set pI =0 and VI =0
in the action (7), i.e., we consider a model with only a

single scalar field p2, then also in the resulting theory all

isotropic cosmological solutions will be nonsingular, even

when matter is included. However, there is no general
bound on the curvature valid for all trajectories [10].
The second scalar field p] and the corresponding con-
straint are required in order to bound the curvature in-

variant for these nonsingular solutions.
In this Letter we shall consider a contracting spatially

flat isotropic universe and show that for all initial condi-
tions and for general matter content the final state is de
Sitter space. Hence, there will be no final "big crunch. "
In a similar way, the action (7) also solves the initial

singularity problem.
Of course, to obtain a contracting universe we should

consider a closed universe. However, for scale factors
much smaller than the maximal one a .„, (for a closed
matter-dominated universe) and much larger than the
minimum one a~;„(for a closed de Sitter universe), the
flat space cosmological model is a good approximation.
The only change in a closed universe at large curvatures
is—as will be shown in a detailed paper [10]—that de
Sitter space leads to a "bounce" and a reexpansion of the
universe.

For a contracting universe, the variational equations
which follow from the action (7) take the form [10]

The solution of Eqs. (8) can be reduced to analyzing
the following ordinary first-order differential equation:

dye

dw)

V
II

Vi Vp

——(I —2pi) VI+ —(Vi+ V2)
1, 1

4 2

+ V' (io)

V2(p2) =const — + . as 1yi1, 1~21))I,1

which satisfies the conditions (9), the trajectories are
sketched in the y~-p2 plane in Fig. I, with arrows indicat-

ing time evolution. Qualitatively, there are four different
regions delineated by separatrices. In all regions the
solutions are nonsingular, and in the asymptotic regions

(1+i1+1w21))I) they correspond to de Sitter universes.

A detailed investigation of the phase diagram will be
presented in Ref. [10], where it will also be shown that
the qualitative form of the phase diagram is the same for
any potentials Vi and V2 which satisfy (9).

An interesting question is: What will happen if matter
is incorporated into the model? We have investigated
[10] the behavior of spatially flat and closed universes

which allows a complete investigation using the phase di-

agram method.
For the specific choice of the potential asymptotics

V~ (p~ ) ee w~
—In(e~ ),

1, 1
H = V], H = — V2,

Viz

3(1 —2p()H ——(V)+ V2) = H(vpz+3Hpp),
1 6

Viz

where H=a/a (a being the scale factor), V; =&V;/8p;
for i =1,2 and an overdot denotes derivative with respect
to physical time.

The potentials V~ (p~) and V2(pq) must be chosen such

that for 1pi1, 1pq1«1 the leading terms in the action give

back the Einstein theory. A sufficient condition is

V;(a;)-w; for 1p;1«1. The asymptotic behavior of the
potentials at large 1p;1 can be obtained by demanding

that l~+(6/J12)IP (which is proportional to H ) is

bounded (limiting curvature) and that 12—H tends to
zero at large 1p1 (de Sitter universe). This requires

Vi const at 1p~1 ~ and V2 0 as 1pq1

FIG. 1. Phase diagram for the solutions of (10), arrows
pointing in the direction of increasing time. As can be shown

using (8), the asymptotic solutions are de Sitter solutions.
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containing dustlike matter and radiation using numerical
methods. We showed that also in these cases all solutions
are nonsingular and asymptotically approach de Sitter
space at high curvatures. The matter only influences the
rate of the asymptotic approach of the solution to de Sit-
ter space. Matter terms are subdominant in the asymp-
totic region. In this sense, the theory under consideration
incorporates the property of asymptotic freedom at high
curvatures.

Note that the eA'ective "cosmological constant" which
is responsible for the de Sitter phase has a dynamical ori-
gin and is not put into the theory by hand.

In conclusion, in this Letter we have presented a theory
of gravity whose action contains terms which modify the
Einstein equations at large curvatures and for which all
isotropic cosmological solutions (not only special solu-
tions as in some other models [16]) are nonsingular, re-
gardless of the matter content of the universe. Asymptot-
ically, the solutions approach a de Sitter universe with a
limiting curvature. Hence, the space-time is geodesically
complete.

Our analysis can be considered as a search for an
effective field theory of gravity close to the Planck scale
(but still in the domain where classical space-time notions

apply), under the assumption that this theory is able to
solve the singularity problem.

From our considerations, it is clear how to generalize
the above theory to situations when the Weyl curvature
tensor does not vanish in order to obtain only nonsingular
solutions. An example arises in the case of black holes.
These extensions will be discussed in a separate paper
[17].
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