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Zeta Function for the Lyapunov Exponent of a Product of Random Matrices
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A cycle expansion for the Lyapunov exponent of a product of random matrices is derived. The formu-
la is nonperturbative and numerically eAective, which allows the Lyapunov exponent to be computed to
high accuracy. In particular, the free energy and the heat capacity are computed for the one-
dimensional Ising model with quenched disorder. The formula is derived by using a Bernoulli dynamical
system to mimic the randomness.

PACS numbers: 05.50.+q, 02.50.+s, 05.45.+b

The product of random matrices often appears in the
study of disordered materials and of dynamical systems.
The physical quantities of these systems are related to the
rate of growth of the random product —the Lyapunov ex-
ponent. For example, in the study of an Ising model with

quenched randomness the Lyapunov exponent is propor-
tional to the free energy per particle; in the Schrodinger
equation with a random potential, the Lyapunov exponent
is proportional to the localization length of the wave
function; and in the motion of a classical particle, the
Lyapunov exponent indicates the degree of sensitivity to
initial conditions (chaos). Since Dyson [I] studied a sys-
tem of harmonic oscillators with random couplings, many
problems have been reduced to the study of a Lyapunov
exponent. In these problems the product of random ma-
trices appears when a discrete version of a differential
operator is considered, or when the problem is solved on a
lattice. Further applications of Lyapunov exponents, and
related derivations, are reviewed in the paper by Alex-
ander et al. [2] and the book by Crisanti, Paladin, and
Vulpiani [3].

There are few analytic results for the Lyapunov ex-
ponent of a product of random matrices, and very little
has been determined about related systems without
resorting to Monte Carlo simulations. A theorem of
Oseledec [4] states that the norm of the random product
grows exponentially with the number of multiplied terms
at a rate given by the Lyapunov exponent, but the
theorem does not provide a method for determining the
exponent. The two known methods for calculating the
Lyapunov exponent, weak disorder expansions [5-7] and

microcanonical approximations [8], have limitations. The
weak disorder expansion imposes conditions on the eigen-
values of the matrices and is difficult to carry out to high
orders; and the microcanonical method, while general,
does not provide a systematic expansion and is difficult to

apply to large matrices. In this Letter a formula for com-

puting the Lyapunov exponent will be derived. It is sim-

ple to evaluate and is nonperturbative in character, with

the first few terms providing a good numerical approxi-
mation. In particular, it gives all thermodynamic quanti-
ties for the one-dimensional Ising model with a discrete
valued random magnetic field when the disorder averag-
ing is done over the free energy (this is the more difficult
quenched disorder case).

The formula is obtained by viewing the random prod-
uct as a statistical mechanical system which is solved us-

ing the cycle expansion [9] of its thermodynamical zeta
function [IO]. Cycle expansions have been very success-
ful in obtaining nonperturbative expansions of chaotic
dynamical systems [11,12], of generalized Ising systems
[13,14], and of scattering problems in quantum mechan-
ics [15].

We will consider the product

G(ii) Q T
0&I;(n

of matrices TI,- chosen at random from a discrete set.
This includes many cases of interest and can be used to
approximate a continuous distribution. The maximal
Lyapunov exponent y can be expressed [16] as the rate of
exponential growth of the norm of the product G " with
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the number n of matrices multiplied:

y= lim —(in! lG'"'ll&.1

n -~ fl
(2)

with n(G) being the number of matrices in the product
G. If the weights are cyclic, as in typal =tggg =type, and
multiplicative, as in t~s~s =(t~q), then the inverse zeta
function can be expanded into a cycle expansion [11,14]

The average is over all possible realizations of the prod-
uct, each product taken with the appropriate probability.
The theorem of Oseledec [4] guarantees that the limit ex-
ists for almost every realization. The definition of the
Lyapunov exponent appears to depend on the matrix
norm chosen, but it can be shown [16] that its value
remains unchanged as long as equivalent norms are used.
For the finite-dimensional vector space of nxn matrices
all norms are equivalent, making the Lyapunov exponent
independent of the norm chosen.

Because it is very difficult to handle the logarithm in-

side the average we will substitute a power and a deriva-
tive for the logarithm, and write the Lyapunov exponent
as

y= lim a.—(IIG'"'ll'&l. =o.I

n--
(3)

To determine the averages, introduce the generating
function

((~,a) =exp g &I IG t"'I I'&
n& I

(4)

which is the Ruelle zeta function [13] for a statistical
mechanical system with (IIGt" II'& as the free energy.
The zero z(a) of I/((z, a) gives the exponential growth
of (I IG

"
I
I'& (see Ref. [13],Theorem 5.29]), and by us-

ing the special values z(0) = I and 8-( '(1,0) = —I, the
Lyapunov exponent can be reexpressed as

y= —8, Inz(a =0) = —|I,( '(1,0) .

'(z, a) = / (I —1 ),
CiEP

with the product being over the set P of all possible prime
products. A product of matrices is prime if it is not the
repeat of a smaller length product. Two products are
equivalent for the expansion if they diff'er by a cyclic ro-
tation. For example, if AB is in the set P, then BA does
not need to be in the set as it is equivalent to AB by cyclic
rotation. Also ABAB and BABA need not be in P as they
are repeats of AB or of its cyclic rotation.

To continue the derivation we use the independence of
the Lyapunov exponent on the norm, and choose the most
convenient norm for the cycle expansion. If we choose
the norm absolute value of the largest eigenvalue (or ei-
genvalues), and write it in the peculiar form

IIGI I'= lim ItrG"I
n

then it is simple to verify that the weights tc are multipli-
cative and cyclic. They are multiplicative because

n + oo

pn + oo
(9)

and they are cyclic because the trace is cyclic. The
Prob( ) part of the weight is multiplicative and cyclic, as
is the product of numbers. The cycle expansion for
(IIG "II'& is then obtained by expanding the infinite

product
The expression in terms of the derivative of the zeta

function is of no advantage unless it can be computed in

an efficient manner. If the terms of the zeta function
satisfy certain combinatorial properties the inverse zeta
function can be written as a cycle expansion [9], which is

rapidly convergent and oA'ers a practical scheme for
evaluating the Lyapunov exponent. The average
z "(I IG "

I I& is the sum of terms of the form

( '(~, a) = II [I —~"'"P«b(G) IIGII'] (10)
6EP

to =z"' Prob(G) I IGI I',

into a power series in z. This is essential when computing
the zeros of g '. The power series in z converges as long
as the matrices are hyperbolic (not all eigenvalues are
equal to I in modulus). The cycle expansion (10) can be
used to compute the Lyapunov exponent in Eq. (5). In

the case that there are two matrices forming the random
(6) product, A with probability p and B with probability

q
= I

—p, the first few terms of the expansion of (5) are

—
y = p In I I A I I

+q In I I B I I +pq (In I I A B
I I

—In I I A I I

—
I n I I B I I )

+ppq (In
I I AAB I I

—lnl I A B I I
—In I I A I I ) +pqq (Inl I

ABB
I I

—ln I I AB I I
—lnl I B I I )+. . .

I ab"
12

a b"

where k is + I or —I, a is exp( —2J), and b is

exp( —2h). In this case both matrices have eigenvalues

General expressions and a more detailed derivation can
be found in Ref. [17]. factoring out a common term, are of the form

One test of the expansion for the Lyapunov exponent is
a product of random matrices that appears in the study of
the one-dimensional Ising model with coupling constant J
and a random magnetic field assuming the values ~h.
The two matrices, chosen with equal probability and after
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TABLE I. The Lyapunov exponent and its second derivative
(proportional to the heat capacity) for the transfer matrices
[see Eq. (12)I when j=0.3 and h=1.4. The Monte Carlo and
zeta function values are quoted so that errors are limited to the
last digit.

0:'
+

+
+

+
+

+
+

Method

Weak disorder
M icrocanon ical
Monte Carlo
Zeta (n=l5)

Lyapunov

1.5
1.20
1.] 773
1.177 273 613 34268

Heat capacity

0.4
0.3664

-10—

-15—
I

10 15

that are real and different from 1, and are therefore hy-
perbolic. The Lyapunov exponent for these matrices can
also be computed by Monte Carlo simulations, weak dis-
order expansions, and microcanonical approximations.
Table I has the results for these methods. The Monte
Carlo calculation corresponds to 128 realizations of a
product of 10 matrices; the weak disorder expansion is

carried to fifth order; there is no error estimate for the
microcanonical method, except for a rigorous upper
bound; and the value for the zeta function method was
computed by including cycles up to length fifteen. The
zeta function expansion takes 17 s on a Sparcstation 1

computer, whereas if the Monte Carlo simulation had to
be carried out to the precision obtained in the cycle ex-
pansion, it would require several hundred years of
Sparcstation I time. The weak disorder expansion could
in principal match the accuracy of the zeta function ex-
pansion if the terms of higher order were known. Also in

Table I the second derivative of the Lyapunov exponent
(proportional to the heat capacity at p = I ) is computed
by numerical differentiation. Notice that, except for the
zeta function, all analytic methods fail to provide a value
for the second derivative and that even though Monte
Carlo simulation does estimate the derivative with one di-

git, a better estimate would require a prohibitive amount
of computer time.

To study the convergence of the zeta function method
one can plot the rate at which digits are gained in the
value of the Lyapunov exponent as longer cycles are in-
cluded in the expansion. The better a system is under-
stood, the better the nature of the convergence. In Fig. 1

the number of correct digits as a function of the largest
cycle considered is plotted. If y„ is the approximation to
the Lyapunov exponent when cycles up to length n are in-
cluded, then the number of digits is defined as d(n)
=log~o(y„-~ —y„). The straight line indicates that the
convergence is exponentially fast in the length of the
product.

To further illustrate this method, Fig. 2 has a plot of
the Lyapunov exponent for the Ising model pair of ma-
trices chosen with equal probability and in units where
J=h=p. In the plot all points can be computed to
machine precision, and the convergence rate is similar to
that of Fig. 1. Thus the method is not limited to small

cycle

FIG. l. Number of digits that remain constant as longer cy-
cles are included in the expansion of the Lyapunov exponent.
The solid circles are for the random Ising model and the crosses
are for the degenerate 3X3 matrices. Also indicated in the plot
are the accuracy of the weak disorder expansion (dot-dashed
line) and the microcanonical approximation (dashed line).

0.8—

06 —'

0.4
0

,~
~-oo-~
I I

FIG. 2. Lyapunov exponent (free energy) for the pair of ma-
trices [Eq. (I2)I that describe the Ising model with quenched
randomness us a function of the inverse temperature P. The
dotted line is an interpolation of the computed points.

values of the inverse temperature p as the weak disorder
expansion, and can be used to obtain thermodynamic
quantities at any temperature.

The weak disorder expansion cannot be applied when

there are repeated eigenvalues, so to illustrate the zeta
function method the Lyapunov exponent has been com-
puted for a pair of matrices with degenerate eigenvalues.
The random products are formed from a pair of 3X 3 ma-
trices, which have the same eigenvalues, do not commute,
and are not related by a similarity transformation. The
eigenvalues are 2, 2, and 1. The exponential convergence
of the method is not affected by the largest eigenvalue be-

ing degenerate, nor by the presence of an indifferent ei-
genvalue (the one of value 1). In Fig. I the crosses are
the plot of the number of nonchanging digits of the
Lyapunov exponent as a function of the cycle length.

The cycle expansion developed in this Letter for the
Lyapunov exponent is an e%cient computational tool. It
can be applied to a wide variety of matrix products
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without the limitations of other methods, and excludes
only the matrices where all the eigenvalues are one in

modulus. The method has been successfully applied to
Ising models with a random magnetic field on a strip
[17], and also in reproducing the branch point at zero
temperature predicted by Derrida and Hilhorst [18] in

the same model.
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