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X-Ray Circular Dichroism as a Probe of Orbital Magnetization
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A new magneto-optical sum rule is derived for circular magnetic dichroism in the x-ray region
(CMXD). The integral of the CMXD signal over a given edge allows one to determine the ground-state
expectation value of the orbital angular momentum. Applications are discussed to transition-metal and

rare-earth magnetic systems.
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The orbital part of the magnetic moment, u;, in mag-
netic materials is determined by the interplay among
several effects: Coulomb and spin-orbit interactions, hy-
bridization, and crystal fields. To study these effects, the
independent determination of u; and ug (the spin part) is
of prime importance.

In neutron scattering, the two contributions can be
separated by fitting the measured form factors with a
suitable model [1]. In nonresonant x-ray diffraction, as
shown by a theoretical analysis [2,3], different polariza-
tion responses directly separate spin and orbital densities;
however, all attempts to implement a quantitative separa-
tion experimentally have been, so far, inconclusive [4].

In this Letter we show that, to a good approximation, it
is possible to measure directly the ground-state expecta-
tion value of the orbital angular momentum operator L.
by core-level absorption spectroscopy. This is achieved
by considering the difference between the integrated ab-
sorption intensity for right and left circularly polarized
light. This integral of the circular magnetic x-ray di-
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with f,,% the oscillator strengths for left and right circu-
larly polarized light. The second term in the right-hand
side arises from the spin-orbit interaction in the valence
shell; order-of-magnitude estimates, based on hydrogenic
wave functions, show that it gives a very small correction
to the first term. Expression (1), derived by considering
E'1 transitions only, is formally exact; nevertheless, it has
a limited degree of application, as it implies a sum over
an infinite number of transitions.

To derive a more useful formulation, in which only E|
transitions in a finite interval of energy (one edge) ap-
pear, we first consider a model system consisting of a sin-
gle ion with the valence shell only partly filled. Any state
of the ground configuration /" of the ion, in an arbitrary
symmetry crystal field, can be expressed in terms of a
complete basis set: |y)=X,a,|lu). Any basis can be

(a|lS; XV, V+YV,V)|a)|,

chroism (CMXD) has to be taken over a complete core-
level edge of magnetically oriented ferromagnetic or fer-
rimagnetic materials. If the edge is spin-orbit split, the
integration must be over the two components. Our re-
sults agree well with the available experimental data,
such as those obtained at the L, ; edges of ferromagnetic
Ni [5], and the M4 s edges of Gd** in the gadolinium
iron garnet [6].

The strong final-state interactions of the valence shell
with the core hole normally allow one to draw only in-
direct conclusions about the ground state from core-level
spectra. However, the importance of the integrated
CMXD is that it directly measures a ground-state prop-
erty.

The importance of sum rules is well known in optical
spectroscopy, and has often been used to derive nontrivial
ground-state properties, such as the number of electrons
participating in a band of optical transitions, the plasma
frequency, etc. In magneto-optics, the following sum rule
was derived by Smith for zero external magnetic field [7]:

(1

chosen; for convenience we use the basis |u)
=|/"aLSJM). In the same way, any state of the final
configuration ¢/"*' (¢ denotes a core hole) can be ex-
panded in the basis [\)=|/"*"(aLSJ)(c ¥ j)J M) [8].

Given the ground state |y), transition probabilities to a
dipole-allowed final state can be written as

P,(y)= ) a,a,u|CINA|CL, u"
o' A

=(y|P,lp),

where C/ is the normalized spherical harmonic operator.
Our aim is to find a simple expression for an arbitrary
matrix element of P,, for the /" configuration. Applying
the Wigner-Eckart theorem and using standard graphical
methods [9,10], one has
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PV the radial part, and la, ...,b1=Qa+1) --- (2b+1). This expression can be conveniently transformed by apply-
ing Theorems 3 and 4 (YLV 3 and 4) of Yutsis, Levinson, and Vanagas [10]. First, we use the relation

and sum over J, using YLV 4; then we rearrange the resulting expression, by applying YLV 3 to L, L', and z, and sum
over Ly (YLV 4). Finally, we apply YLV 3 to z, I, and 1 to obtain

(ulPlu= X [21(n+1 )[—LQU,J’] 172
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As z=(0,1,2), because of the triad (z,1,1), P, consists of a sum of three terms, each with a different g dependence.
The z =2 term describes linear dichroism; it will not be discussed here. The z=0 term can be written as [11]
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where 4/ +2 — n denotes the number of holes in the valence shell. Expression (2) is g independent; it describes the unpo-
larized absorption spectrum and provides a useful normalizaiion (see below). For the z=1 term, we find
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in units of A [12]. This is our main result [13].

In deriving expressions (2) and (3), we neglected the
differences between the radial parts if the edge is spin-
orbit split. They arise from relativistic corrections, which
scale with the ratio of the core level spin-orbit splitting to
the average excitation energy. This approximation intro-
duces errors of the order of 1% for the L, 3 edges of 3d
transition metals and the M4 5 edges of rare earths [14].

Now, we briefly discuss the connection between our
single-edge results and the sum rule of Eq. (1) with the
small spin-orbit corrections omitted. Once again, we con-
sider a single ion with the valence shell only partly filled.
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Then, Egs. (1) and (3) are consistent if
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with E,; . the average transition energy and
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the sums are extended to all E 1-allowed transitions with
nonzero CMXD, including the continuum. This equation
holds exactly for one-electron spherical systems because
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of the Wigner-Kirkwood sum rules [8]. A Hartree-Fock
evaluation of (4) for Gd'* (4f76s2) shows agreement
within 8%. The discrepancy is due to configuration in-
teraction, which makes an exact separation into single-
shell contributions impossible, especially for transitions to
the continuum [8,14].

To obtain an expression which directly compares to ex-
periments, we normalize expression (3) to the unpolar-
ized absorption spectrum [expression (2)]. We have
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independent of P(.(/'). Here u denotes the absorption
coefficient. As p is a quantity directly measurable from
polarization-dependent core-level spectra, expression (5)

allows the determination of the ground-state expectation

value (L.) per hole.

It can be shown that our results for the integrated
CMXD still hold in the case of a larger basis set. Con-
sider the addition of an extra (partly filled) shell X to the
[" configuration, for which ¢— X transitions can be
neglected; with ©® and 6’ denoting arbitrary states of /"
and ¢/"*' we have

(1"e,x|Cllcl"t'6', X"y =5xx{1"8|C}|cI"*'8")

indicating that the presence of the extra shell has no
effect on the integrated CMXD (although it may change
the shape of the spectrum). The orbital momentum of
the spectator state X is not measured; in other words, the
integrated CMXD provides a shell-selective measure of
(L.). Similar considerations apply when there is hybridi-
zation. Take an arbitrary ground state, given as a mix-
ture of two configurations, |g)=a,|/"0))+a;|I" L)),
and consider transitions to the E l-allowed final state,

| L =Bilct" 'O +B|cl"?LOS). Neglecting the weak

c— L transitions, we have
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showing that (P,).=, provides the total (L.) of the
configuration.

Using the particle-hole symmetry, it can also be shown
that expression (4) holds for transitions from the /" con-
figuration to any E 1-allowed empty shell.

Experimentally, the determination of {L.) requires the
measurement of the absorption spectra, on a ferromag-
netic sample, with the B field parallel (¢ *), antiparallel
(u7), and perpendicular (4°) to the photon angular
momentum vector. At the L, 3 edges of Ni, ut and u-
have been accurately measured [15] and the integrated
intensities determined; they give p=0.025+0.003 as-
suming u®=(u*+u 7)/2. Using this value in Eq. (5),
for c=1 (2p) and /=2 (3d), we obtain {L.)=0.050
+0.006 per hole, in agreement with calculations [16]
and neutron scattering data [1], indicating a 0.05uz or-
bital magnetic moment per Ni atom. We also apply Eq.
(5) to CMXD data obtained at the M4s edges of
FesGd;Oy2. In this system the 4f7 ground-state
configuration of Gd** (an almost pure %S/, state) im-
plies (L.)=0. This is confirmed by the integrated
CMXD data [6] which yield {L,)=0.00+0.06. It is im-
portant to notice that even values of p of 0.01 can be
measured with a (5-10)% precision, allowing determina-

tion of orbital moments as small as 0.01up.

To summarize, we have shown how to derive an ap-
proximate magneto-optical sum rule, which relates the in-
tegrated CMXD response of a core level to the ground-
state expectation value of a “shell-specific” orbital mag-
netization. Expression (5), derived in the electric dipole
approximation, with a few assumptions introducing gen-
erally small errors, agrees with existing data for Ni and
Gd.

The experimental relevance of our work stems from the
fact that CMXD, yielding a direct measure of (L.}, pro-
vides a suitable method to independently measure the
orbital contribution to the magnetic moment. These
findings should motivate further CMXD experimental in-
vestigations on magnetic materials; in the case of transi-
tion metals and actinides, our sum rule can be used in the
study of the quenching of the orbital momentum and its
relation to the localized or itinerant nature of the total
magnetic moment.
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