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Integrable Two-Band Model with Attractive and Repulsive Interactions
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The exact solution via Bethe's ansatz to a model consisting of two parabolic bands of electrons with lo-

cal attractive and repulsive interactions is presented. Some low-temperature properties of this model are
discussed as a function of the interaction strength, a magnetic field, and the crystal-field splitting be-
tween the bands. The attractive interaction leads to Cooper-pair-like bound states and a threshold mag-
netic field is required to overcome the binding energy. The low- T specific heat is proportional to T ex-
cept at critical points where C ~ T '

PACS numbers: 74.40.+k, 75.40.—s

The discovery of numerous high-temperature supercon-
ductors has renewed the interest in low-dimensional sys-
tems. Although in this context the main interest is cen-
tered around two-dimensional (20) highly correlated
electron systems, it has been conjectured [1] that proper-
ties of the 1 D and 2D variants of certain models have

common aspects. Exact results in 1 D are often more ac-
cessible than 2D ones and may provide a testing ground
for approaches intended for more complex problems.

Many properties of integrable one-dimensional in-

teracting fermion systems and quantum spin models have

been derived by exact diagonalization of the Hamiltonian

by means of Bethe's ansatz. The knowledge of the com-

plete set of energy eigenvalues enables one to obtain the

t

free energy and to study the thermodynamics of the sys-

tern. In this paper we present the solution to a new in-

tegrable model consisting of two bands of electrons with

local attractive and repulsive interactions. The interest in

two-band models arises from the possibility that both the

31,. 2 ), 2 and 3d 2 orbitals may play a role in high-T, . cu-
prates. The attractive interaction leads to pairing bound
states of the Cooper type and at zero temperature to no

response to fields smaller than a threshold field 0, The
low- T specific heat is always proportional to T, except for
band fillings very close to the one-dimensional Van Hove

singularities. If the interband interaction is the attractive
one, the model gives rise to exciton bands. The exciton
bound states are formally analogous to the Cooper pairs
if band and spin indices are interchanged.

The Hamiltonian under consideration is the following:

H =g I'dxct (x)
t)10'

2

c„, (x)+—' g „dxi dx, 8(xi —x~)c„',.(x))ctn, (x2)c„,.(x, )c,'„„,(xi),
8x L ning'acr'

where m =1,2 labels the bands, c„, (x) creates an elec-
tron of spin cr at x in the band m, L is the length of the

box, and c is the strength of the 6-function exchange in-

teraction. Note that the two parabolic bands have equal
masses (a necessary condition for the integrability of the

model) and that the number of particles with up and

down spin and the number of particles in each band are
conserved quantities. This model contains as special
cases the Gaudin-Yang many-body problem of N fer-
mions interacting via a 8-function potential in 1 D for
both repulsive [2,3] and attractive [2,4] coupling, and its

Bethe ansatz solution is topologically related to that of
the two channel Kon-do problem [5,6].

The structure of the Bethe ansatz equations follows
from the solution of the two-particle problem. The two-

electron wave function can be written as a product of
three factors: a coordinate wave function (referring to
the positions and momenta of the particles), a spin part,
and a factor involving the band labels (m =1,2; we will

call this the orbital factor). The global wave function has

to be antisymmetric under the exchange of two particles.
If the spin and orbital wave functions have the same pari-

ty, the coordinate wave function has to vanish if x ] =x2
and the two particles do not interact. I nteracting fer-
mions then form a spin singlet and orbital triplet (attrac-
tive interaction) or spin triplet and orbital singlet (repul-
sive interaction). The scattering matrix can be written as

a product ol spin and orbital spaces,

(k (
—k.)1 —icP (k )

—k.)1„,+icP„,
S(k i, k. ) =

(k )
—k p) ic (k t

—k.)+ic— ,
(2)

where l„(1„,) and P (P„,) are the identity and permuta-

tion operators for the spins (band indices), respectively,

and k ] and k 2 are the momenta of the electrons. Since
the scattering matrix (2) factorizes into scattering ma-

trices for the spin and orbital channels and each of them

satisfies the triangular Yang-Baxter relation [3], the

model (I ) is integrable.
The discrete Bethe ansatz equations are now derived

following the standard procedure [3-6] by imposing

periodic boundary conditions. Each state of the Hamil-

tonian is specified by one set of "charge rapidities tkl]
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M kj —
A.

—sic
-p(k, L)=II ', Ila=I kj ka+ & tC p=1

kj cop+ p ic

kj cop y lc
(3a)

representing the momenta of the electrons, one set of
"spin" rapidities [A,,j, and one set of "orbital" rapidities

[ro~j. All rapidities within a given set have to be dif-

ferent, leading to Fermi statistics. The rapidities are
determined by

Each eigenstate of the Hamiltonian is specified by sets
of rapidities which have to satisfy the Bethe ansatz equa-
tions (3). In the thermodynamic limit the solutions to
Eqs. (3) are given by strings [8] and can be classified as
follows [4,6]: (i) N —2M real charge rapidities k repre-
senting unpaired electrons; (ii) M pairs of complex-con-

jugated charge rapidities corresponding to bound states of
the Cooper type; (iii) M„' strings of length n, associated
with excited spin states, of the form

N A, k y lca j
j=l A.,—kj+ —,'ic

~ X.—Xp
—Ic=-U '

p =
l A.a kp+ lC

(3b)

k =k,'+ ~ ic(n+ I —2p), p = I, . . . , n; (4a)

and (iv) m„strings of length n forming interband bound
states of the type

a=I, . . . , M, ro=ro„'+ ~ ic(n+I —2p), p=l, . . . , n. (4b)

U
'm —k ——.ic

j =l Np
—kj+ ~ IC

Np Na 1C—ii
Np Na+ lC

(3c) Here A.„' and ro„' are real parameters, and the integers M,
M, m, M„', and m„satisfy the following relations:

, . . . , m,=1

and the energy and magnetization are given by

M'=M —M= g nM„', m= g nm„.
n=l n 1

(4c)

N

E=g k,'-, 5-= ~N —M.I (3d)

N —m and m are the number of electrons in the majority
and minority bands, respectively. If either M or m is

zero, the equations reduce to the Gaudin-Yang [2,3]
many-body problem. Equations (3) are related to a vari-

ant of the two-channel Kondo model [6]. Note that the
Bethe ansatz eigenfunctions are only a basis of states
within the subspace of fixed N, M ~ N/2 and m ~ N/2,
but they are not a complete set of eigenstates of the
Hamiltonian [7].

The above solutions are inserted into the discrete Bethe
ansatz equations and integral equations relating the den-
sities of states of the different classes of rapidities are ob-
tained. We now proceed to calculate the free energy of
the system following standard methods [4,5,9, 10]. Since
all rapidities within one class have to be different, their
occupation follows Fermi statistics and is conveniently
described in terms of energy bands. We denote these en-

ergy bands with e(k) for the real charge rapidities, y(k)
for the paired charge rapidities, y„(A.) for the l strings,
and Ic„(ro) for the ro strings of length n (n =1,2, 3, . . .),
respectively. These thermodynamic energy potentials
satisfy the following set of nonlinear integral equations:

e(k) =k -' —p ——' H —5+ Ta~ ln(«I +e v ) —Tg a ln[( I +e
" )(I+e "" )], (sa)

y(k) =2(l' ——,
' c —p —6)+Taq«In(l+e ~ )+Ta~ In«(1+ e' ) —Tg[a„-~+a„y~] I «(nIe+"" ), (sb)

ln(l+e " ) =nH/T+QA„„I «(In+e " )+ „a«nl( I+e ' ),
n'

In(l+e " ) =2nd/T+QA„„«In(I+e "" ) —a„«ln(1+e ' ) —[a„-~+a„+~]«In(l+e v ),

(5c)

(sd)

where the asterisk denotes convolution and p, H, and 6
are the Lagrange multipliers for the conservation of the
number of particles, the spin, and the relative band popu-
lation, i.e., the chemical potential, the magnetic field, and
the crystalline-field splitting. Here a„(n &0) and A„„
are the Fourier transforms of

e
—(n ).~ //2

coth(c [x [/2) [e I" "I' I" I —e «+» "I«l&']

respectively. The free energy of the system is given by

—= —T ln(1+e ' ) —T ln(l+e ~ ) .,

~ dk dX T

L 2' 4 Z

The solution of the above integral equations yields the
thermodynamic properties of the model as a function of c,
T, p, H, and A. In the limit 5 ~ (keeping p+6 finite)
the potentials x„are very large and it is straightforward
to verify that these equations reduce to those for the one-
band model with an attractive potential [4]. Similarly,
for H ~ (with p+ —,

' H kept finite) the potentials y
and &„ become very large so that those states cannot be
occupied and Eqs. (5) reduce to those of the one-band
problem with repulsive interaction [4]. The structure of
Eqs. (5) (but not the driving terms) is also similar to the
thermodynamic Bethe ansatz equations of a variant of the
two-channel Kondo problem [10].
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VVe now restrict ourselves to analyze the low-tem-
perature properties of the model. It follows from Eq.
(5c) that p„(A.) & 0 for all A, and n .Similarly one obtains
after some transformation of Eq. (5d) that «„(co) & 0 for
all co if n & 2. In view of the Fermi statistics obeyed by
the rapidities a positive potential implies that the state is

empty at low T, while rapidity values for which the ener-

gy potential is negative correspond to occupied states.
Hence, the low-T physics is completely determined by the
potentials e(k), y(A, ), «~(co), and «2(co). All four poten-
tials are symmetric functions of their argument and vary

monotonically with ) k (, ( A ), or ) ai ). The respective "Fer-
mi surfaces" are obtained by the conditions

e(~Q) =0, y(+ B)=0,

«, ( + w, ) =o, «, ( + w, ) =o .

Here Q, B, A ~, and Aq are determined by p, H, and A. It
is usual to separate e(k) =e (k)+a+(k), y(A, ) =y (X)
+y+(A), and «;(c0) =«; (co)+«;+(co), i =1,2, where
the index + ( —) denotes the positive (negative) part of
the function. Renormalizing p p+6 the ground-state
integral equations can be written as

e+(k)+e (k) =k' —
p

——, H+a 2+ «2 —a~+[@ —
«~ ],

y+(X)+y (A) —2(X —
4
c' —p) = —a2+[y —«) ] —a)+e +[a3+a(]+«2 = —[«]+(A)+«~ (X) 2h],

«2 (k)+«i (X) =4A —[2a2+a4]*«2 +a2*e +[a3+a~]*[@ —
«~ ].

(8a)

(8b)

As a function of the band energy potentials, the ground-state energy, the total number of electrons, the magnetization,
and the minority band occupation are given by, respectively,

(k)+ 1 ( ) W=-
L " 2n 4 x '

tip
'

(8d)
t' dk a.-(k)

4z t)p

I' da) t)«I (co)

2n |)p

+ dpi cl«2 (N)

ll t)p

In the absence of a magnetic field all electrons are paired in Cooper-like spin-singlet bound states and the band of un-

paired electrons is empty, i.e., Q=0. Although bosons form the symmetry of the wave function and their spin, these
Cooper pairs must have all diA'erent quantum numbers, i.e., they have a Fermi surface. They are hard-core bosons and
do not undergo a condensation (analogous to spin waves in the antiferromagnetic Heisenberg chain); i.e., the system has
no long-range order. The particle-hole excitations of these hard-core bosons form a continuum spectrum with energies
vanishing for small momentum transfer and for excitations across the Fermi surface. A magnetic field H larger than a
critical value

H, = —2p —2 . dk[a~(X)y (X) —aI(X)«I (X) —a2(k)«2 (k)]

is needed to overcome the binding energy of the Cooper
pairs. In other words, there is no response to a field

smaller than H, The depaired electrons for H & H, oc-.
cupy the unpaired-electron band, e(k), and give rise to a
magnetization [11,12]. Hence, if H, &H the e(k) b. and
has a finite excitation energy of H, . —H; on the other
hand, if H & H, also this band has a Fermi surface and a
continuum spectrum of electron-hole excitations.

Assume that the field is incremen ted by a small
amount from H, . to H. The magnetization then changes
from 0 to a value proportional to 2Q, i.e., the "Fermi
momentum" of the unpaired electron band. For small k,
the dispersion of this band is parabolic [see Eq. (8a)], so
that H —H, ~Q and M ~Qa-(H —H, )' [12]. The
susceptibility is then proportional to (H —H, ) ', as a
consequence of the 1D Van Hove singularity, and the
critical exponent is 6=2, characteristic of a Prokovsky-
Talapov [13] level-crossing transition.

The ground-state integral equations simplify in three
limiting cases. (i) If h is very large and H=0 only one
band is occupied and Eqs. (8) reduce to one integral

equation for tv. (ii) If 6 =0 the two bands are degenerate
and the m strings for n= 1 and 2 fill the real axis, so that
«~+(ro) and «2+(ra) vanish identically. Fourier transform-
ing, the ai strings can be eliminated from the set of equa-
tions and again the problem reduces to one integral equa-
tion if H =0. (iii) The integral equations can be solved in

the limit c 0, yielding (a) H, =0, as expected, (b) an

empty «~ band, and (c) a partially occupied «q band only
if 6 (p/2.

As already noted in the introduction, if either the sign
of c is changed or the spin and band indices are inter-
changed, the interband interaction is attractive. The
bound states can then be interpreted as excitons, H corre-
sponds to the interband splitting, and h, is the Zeeman en-

ergy.
The low-temperature specific heat can be obtained us-

ing the Sommerfeld expansion. One obtains that Ca: T
for all parameters except when the Fermi level is at a
Van Hove singularity, ~here it is proportional to T in

analogy to the Prokovsky-Talapov level crossing [13].
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Note that the Cooper-pair bound states do not cease to
exist at finite T (T, =.0) and are still the dominant states
if the temperature is low. At T~O the system responds to
a small magnetic field, but the susceptibility is exponen-
tially small as T 0.

Finally, we briefly discuss the one-particle and two-

particle correlation functions as a function of distance at
T=O. Since the spin excitations have a gap for H & H,
and it is necessary to unpair a Cooper pair if one electron
is withdrawn from the system, the one-particle Green's
function must fall off exponentially with distance, the
correlation length being inversely proportional to H —H, .
If the field is larger than H, , this correlation function will

fall off as a power law, typical of one-dimensional con-
ductors. Correlations between Cooper pairs, on the other
hand, just fall off with distance as a power law, since the
excitation spectrum is a continuum.
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