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Multiscaling of the free energy is obtained by generalizing the classification of phase transitions pro-
posed by Ehrenfest. The free energy is found to obey a new generalized scaling form which contains as
special cases standard and multiscaling forms. The resolts are obtained by analytic continuation from
the classification scheme of Ehrenfest.
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An increasing number of recent publications report a
novel type of scaling behavior which has been termed
multiscaling [1-11]. Particular examples were found in

spinodal decomposition [3-5], turbulence [6,7], sandpile
models [2], diffusion-limited aggregation [1,10], and
frequency-dependent dielectric data for supercooled liq-
uids [11]. In view of the importance of scaling concepts
in many branches of physics these findings are of great
general interest.

Multiscaling will be defined here as a scaling form in

which the critical exponents may become scale depen-
dent. This terminology was introduced by Coniglio and
Zanetti [3] to express the similarity between multiscaling
and multifractals. Indeed it was pointed out recently [g]
that multiscaling follows generally from multifractality
whenever a lower cutoff is introduced in the calculations
of correlation functions. It should be noted that multi-

scaling is a generalization of standard scaling and con-
tains the latter as the special case in which the exponent
function is a constant.

Despite its generality and early appearance [12] multi-

scaling forms have not found much attention in statistical
physics. It should therefore be interesting that different
forms of multiscaling appear naturally already at the lev-

el of classical thermodynamics. The purpose of this paper
is twofold: to show (1) that the Ehrenfest classification
of phase transitions applies to continuous transitions in

exactly the same way as to first-order transitions and (2)
that this observation gives rise to different forms of multi-

scali ng.
General phase transitions were classified by Ehrenfest

[13] according to their order. Ehrenfest defined a pth-

order transition as one in which the jth-order derivatives
of a thermodynamic potential with j ~p —

1 are continu-
ous while the pth derivative sho~s a jump discontinuity.
To be specific consider a magnetic system whose free en-

ergy F(t,h) is written as a function of reduced tempera-
ture t =(T T, )/T„—and the ordering field h. The origin
(t =O, h =0) is assumed to belong to a critical manifold,
and represents the critical point of interest.

Let 8: IR IR, s (t (s),h (s) ) be an arbitrary
smooth curve through the critical point such that t(0) =0
and h(0) =0. The phase transition can now be classified

by applying Ehrenfest's idea to the singular part of the
free energy restricted to the curve C. Define the limits

A —(C)= lim
r --+ 0

dvF, ;„s(t(s),h (s) )
dsp

for the pth derivative of the singular part of the free ener-

gy restricted to the curve P. The order of the phase tran-
sition along the curve C is defined by Ehrenfest as the
smallest integer p(P) ~ 1 such that A+(P)~A (C ).
Many authors have discussed the inadequacy of Ehren-
fest's classification [14-16]. As a consequence, it has be-

come customary to distinguish only between first-order
and continuous transitions. However, it will be shown

here that Ehrenfest's classification remains generally ade-
quate and that analytic continuation in p allows us to
classify continuous transitions precisely according to their
order.

The key step towards a quantitative distinction between

continuous phase transitions of different order is to
rewrite (1) in terms of a finite difference quotient. Re-
writing (1) for the singular part of the free energy then

gives

(&) = lim lim
.- -O- ~-- - N g ( —1)' P F t s+ ~,h s~

j=0 j N
(2)

where p is an arbitrary integer variable and the subscript of F has been suppressed to shorten notation. This reformula-
tion of Eq. (I) can be analytically continued in p to give

& —(&)= lim lim I ( —p)
. -o.-tv --- W', =, r(j+I)
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where now p 6 R. Using the analyticity away from the critical point it can then be shown that

(@) l. ( ),
( (

p g (+-s)" d F(t(s),h(s))
..-o- t=o (k —p)kl ds"

(4)

It follows that there exists a unique pair of numbers

p
—(C ) such that A —(C ) =0 for p (p —(C ) and

8 —(C ) =~ for p) p
—(C ). The dependence on the

particular curve has been indicated explicitly. This sug-
gests the definition

p-(C) =sup/pe R(p~ 1, W -(C) (~} (s)

for the generalized order of the phase transition along the
curve C. The di[ference AA =(A+ —A ( might be used
to characterize the strength of the transition. For the Is-
ing transition along the temperature direction one has
p+ =p =2 —a, where a is the specific-heat exponent.
Similarly the order along the critical isotherm (t =0) is
found to be 1+1/b by exchanging the role of t and h.
Depending on the nature of the critical point the order
may or may not be path dependent.

The considerations above show that analytic continua-
tion of Ehrenfest's thermodynamic theory leads directly
to power laws with nonclassical exponents. In addition,
thermodynamic multiscaling arises because both ampli-
tudes and exponents are in general path dependent.
Equation (4) shows that the singular part of the free en-
ergy has the form

F(t (s),h (s) ) = Y(C ) (s ("

where Y and p are functions of the parameters defining
the curve C. Equation (6) represents a very general form
of power-law scaling and includes general forms of multi-
scaling.

The last statement is readily verified by expanding the
curve C around s=0. Consistency with Eq. (6) suggests
to require that 8 can be expanded into a Frobenius series
having the general form t(s)(=to(s( '+6(ls( ' ) and

(h(s)(=ho(s( "+6((s( " ). Obviously, in the limit
s 0 only the first term depending on the parameters to,
hp, k„and A.h remains important. To obtain the behavior
of F in the t direction near the critical point one solves
(t(s)( and inserts the result into (6) and into (h(s) l. This
gives (h(=a(t( near the critical point with a=hoto
and 6=X&/1, . Thus the free energy obeys the general-
ized scaling law

(7)

where q(x,y) and Z(x,y) are arbitrary functions. From
Eq. (7) arise two natural forms of multiscaling if either
one of the parameters a or A is expressed as a function of

and h. In the first case the scaling variable is
a =(h (/(t (; in the second case A =log((h (/&)/Ioglt I.
%'bile the first scaling variable has been used traditional-
ly the second has only recently appeared in the multiscal-
ing context.

Equations (6) and (7) are the main results of this pa-

per. Equation (6) shows that in a rather general way the
concept of scaling is already implicitly present in tradi-
tional thermodynamics. Correspondingly Eq. (7) sheds
new light onto the questions of scaling and universality
from a thermodynamic point of view. While standard
scaling is recovered as the special case in which q is con-
stant multiscaling with nonuniversal critical exponents
can occur in the general case. Moreover, according to
(7) the characterization of universality classes for critical
behavior may in general require two scaling functions
rather than one scaling function combined with two
characteristic critical exponents. Incidentally, the oc-
currence of two characteristic functions is also predicted
from an exact renormalization-group treatment [17) for
the free-energy density suggesting that traditional univer-

sality is only an approximate concept.
The critical exponents from the theory of critical phe-

nomena can be related to the values of the function
q(x, LL) for x 0 —.One find

2 —a= lim q(x, 4),x-0+

P= lim q(x, A) —4,
0

2 —a'= lim q(x, A),
x 0

1+—=—lim q(x, A),1 1

hx-
@=2'—lim q(x, ~), y'=2& — lirn q(x, /3) .

x 0+ x 0

[I] P. Meakin, A. Coniglio, H. E. Stanley, and T. A. Witten,
Phys. Rev. A 34, 3325 (1986).

[2] L. P. Kadanoff, S. R. Nagel, L. Wu, and S. M. Zhou,
Phys. Rev. A 39, 6524 (1989).

[3] A. Coniglio and M. Zanetti, Europhys. Lett. IO, 575
(1989).

[4] A. Coniglio and M. Zanetti, Phys. Rev. B 42, 6873
(1990).

[5] A. Coniglio and M. Zanetti, Physica (Amsterdam) 163A,
325 (1990).

If the function q(x, h) is discontinuous at x =0 then, e.g. ,
a&a' becomes possible. The standard scaling relations
are recovered when q is constant.

Summarizing, this paper has shown that continuous
phase transitions can be usefully classified according to
their generalized orders. The classification implies new

forms of thermodynamic multiscaling. The fact that
multiscaling appears naturally in the general context of
thermodynamics suggests that it may be a much more
widespread phenomenon than currently apparent.
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