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Diffusion Anomaly near Structural Phase Transitions
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We consider the diffusion of a particle coupled to a surface which undergoes a structural phase transi-

tion. Using a recently developed microscopic theory of diffusion we show that the diffusion coefficient is

anomalously reduced near the transition because of diverging value of the friction near the transition.
To demonstrate this anomaly, we evaluate the diffusion coefficient for a model Hamiltonian describing
an adatom on the W(100) surl'ace which undergoes a (I x I )- c(2&&2) reconstruction.

PACS numbers: 68.35.Rh, 05.40.+j, 68.35.Fx, 68.35..l;t

Anomalous behavior of diffusion has often been used to
identify phase transitions on surfaces [1], and has impli-
cations for a variety of systems, including diffusion-
limited chemical reactions [2] and ffux-line motion in

high-T, superconductors [3]. ln this Letter, we consider
an adatom diffusing on a surface which undergoes a
structural phase transition at some critical temperature
T, . Near a structural transition, it is well established
that the vibrational excitations of the medium display
strong anomalies [4,5]. Besides the softening of a phonon
branch, there is also a collective "central peak" excita-
tion, which is apparent in the dynamical structure func-
tion S(q, to), near the critical wave vector qo. The cou-

pling of these excitations to the adatom leads to anoma-
lous temperature dependence of the friction exerted by
the medium on the diffusion particle. In fact, we will

show using a recently developed microscopic theory of
diffusion that the diff'usion coefficient is expected to
vanish anomalously at T„due to the divergence of
S(qo, ca=0). To demonstrate this anomaly, we apply our
formalism to study the diffusion of adatoms for a model
of the W(100) surface, which undergoes a (1 x 1)

c(2x2) reconstruction [6,7].
The microscopic theory [8] describes the diff'usion of

classical particles in a periodic medium, where the back-
ground particles execute vibrational motion about their
equilibrium positions. The diff'usion constant is evaluated
at the zero-frequency limit of the velocity autocorrelation
function. In the limit of high friction and slow diffusion

(as compared to the vibrational time scale), the elements
of the diffusion tensor are given as the 6 =0, 6'=0 ele-

ment of the inverse of an infinite matrix:

D„,= lim I
—itaPmII '(G —6')6„,, +Z„,(6 —6';co)

rtj ~ 0

—(I/ta)G„g '(G —6')G.] 'Io=oo =o. (1)

Eq. (1), co is the frequency and G, G' denote re-
ciprocal-lattice vectors. g '(6 —6') is the Fourier
transform of the inverse density

p v„(r) —p v„(r),

where V~(r) =+tv(r —Rt) denotes the adiabatic poten-

tial seen by the diffusing particle, and the i's denote in-

teractions between the adatom and background atoms at

RI, averaged over the background vibrational degrees of
freedom. The memory function Z„,(6 —6';to) is given

by

Z„,(6 —6';to) = n '(r) tI„,(r, cu)
kgTVO "

e
—l(G —'G') rdl' (2)

where the friction tensor is defined as

tI„,(r, ta) = g Stt (to)v""(r —Rt )t ""(r—Rt") .
k8Tm Ij,p

(3)

This is a prototype Hamiltonian for structural phase tran-

sitions, which has been very successful in describing the

(1x1)—c(2X2) reconstruction of the W(100) surface

[7]. Here u; is the in-plane displacement of a W atom on

the ith site, and R; =ao(l, m), with integers I and m indi-

cating the equilibrium position of W atoms in units of the

lattice constant au=3. 16 A. C~ ()0) is the nearest-

neighbor interaction strength. For the on-site terms,

Here Stt (ta) is the Laplace transform of the lattice
correlation function, and v"'(r —Rt ) =1)'v(r —Rt )/

I)r„&r,. The key point to note from Eqs. (1)-(3) is that

the friction tensor g depends on the zero-frequency limit

of the dynamic structure factor S(q, to=0). Near the

structural transition, this quantity actually diverges for
q- qo which leads to the diffusion anomaly near the

structural transition.
We now describe the quantitative evaluation of 0 near

T,. with the specific application of our theory to adatom
diff'usion on the W(100) surface. The substrate is de-

scribed by the two-dimensional Hamiltonian

2

H=g +—u;-+ —u;+8H4u;, u;, , +Cigu; u;.Pl A 2 8 4

I nn

(4)
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A (0 and B & 0, and H4 ((0) determines the anisotropy of the system. In our model, the Hamiltonian parametriza-

tion in a dimensionless unit system is such that A = —10, B =40, H4= —1.85, and CI =3.75. Length scale Lo and tern-

perature scale Tp are chosen such that the transition temperature T, and ground-state displacement uo agree with the

experimentally observed values.
The dynamic structure factor S(q, co) is evaluated with a recently developed formalism [5] based on Mori projection

operator techniques. First, S(q, ro) is expressed as a continued-fraction expansion:

101 I I I I I I I I I I ~ I I

kgT
S(q, co) = —2 g(q) lim Im

A' b 0
N+ lB+

g (2)
N+ 16+

N+iB+
The physical quantities 6" appearing in this expansion
are related to the various moments of S(q, co). They are
evaluated by Monte Carlo simulations for substrates of
sizes 20X20, 30x30, and 40x40. The quantity that
shows the most pronounced critical and size eA'ect is

6 ' =g ' [9]. This is extended to arbitrary sizes

through the use of finite-size scaling techniques [10,11].
The dynamical structure factor thus obtained is substitut-
ed back into Eq. (3) to obtain the friction tensor. For the
interaction potential of the adatom with the substrate,
we have used simple model potentials of the form t (q)
= we " "' —re " "', where qa =(z/a, z/a). We
choose the parameters a = (ao/z) and a'=2(ao/n) .
The friction tensor g determines the memory kernel Z

through Eq. (2) which is then substituted into Eq. (I) for
the evaluation of the diffusion tensor. For the inversion

of the matrix in Eq. (I ), the number of 6 vectors needed

depends on the temperature. At lower temperatures, the

(s)

density function is more corrugated and a larger number
is required. A maximum of 333 G vectors were used in

the matrix inversion of Eq. (I) to assure convergence. In

Fig. 1, we show the results for lnD versus temperature.
Compared with the simple Arrhenius form with a con-
stant friction D=(kT/mrl)e ' the actual value of D
is reduced by several orders of magnitude near T, , where
D = e' near T, Here e—=

~
T —T, ~/T and the exponent x

is about 0.9-1.8 depending on the choice of the scaling
region. Because of numerical uncertainties, the exact ex-
ponent cannot be determined with great accuracy. How-

ever, the diff'usion anomaly itself is very robust. With
other choices of the coupling potential the results are very
similar to those of Fig. 1, except that the strength of the
anomaly depends on the relative weighting of the critical
region for different choices of v(q).

It is easy to understand the source of this anomaly.
According to our calculations, S(q, ru) eel (q). Near T,. ,
g(q) obeys the scaling form g(q) =q +"F(e'/q). Sub-
stitution of this into Eq. (3) for the friction yields
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FIG. 1. The diflusion coeScient D(T) shown as a function
of the inverse temperature. The crosses are for a 40X40, the
squares for a 60X60, and the diamonds for a 100X100 system.
The solid line is the expected Arrhenius behavior in the absence
of critical fluctuations of the substrate.
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FIG. 2. The saddle-point friction g(T) as a function of the

inverse temperature. Symbols are as in Fig. 1.
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rI —e" + " [12]. Our previous studies of diffusion
show that the diffusion constant at low temperatures is

inversely proportional to the value of the friction at the
saddle point [13]. In Fig. 2 we show results for the
saddle-point value of the friction for three different sys-
tem sizes. As expected, on approaching T, the value of
the friction diverges until a finite-size rounding occurs
just before T, This then leads to the power-law anomaly
for the diffusion constant as observed in our numerical
work. From our scaling studies of g we estimate that
v(2 —2tI) =1.6 ~0.2. This is consistent with our numeri-

cal estimate of the exponent x =0.9-1.8. Note that the
divergence of g near T,. is analogous to the behavior of
the EPR linewidth near a structural transition [14].

Experimentally, anomalous dips in the temperature
dependence of surface diffusion have been observed, and

qualitatively interpreted as indicating phase transitions on
surfaces [1]. For example, data for H diffusion on the
W(110) surface display a distinct downward cusp around
T=74-91 K, which was ascribed to a phase transition
on the surface [15]. Unfortunately, the true nature of
this transition is not known. At present, the (1 x I)

c(2x2) surface reconstruction on W(100) is best
studied and understood. Measurements of adatom
diffusion and other kinetic processes on this surface in the
vicinity of T,. would be the best avenue to study the
anomaly described here.

To summarize, we have presented a new prediction of
an anomalous behavior of the diffusion coefficient of a

particle coupled to a medium which undergoes a structur-
al phase transition. We have shown through an explicit
calculation how this behavior arises for adatom diffusion

for a model of the W(100) surface near its (I x I ) to
c(2x2) transition. Because of the rather universal be-

havior of the dynamic structure factor near structural
transitions, the theory has important implications for

physical processes such as diffusion-limited surface reac-
tions, where a slowing down of the reaction may result if
the underlying substrate undergoes a transition. Also, in

the case of weak randomness the linear part of the resis-

tivity of high-T, . superconductors, which is proportional

to the diffusion coefficient of the flux lines, may exhibit
an anomalous dip near structural transitions of the Abri-
kosov flux lattice.
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