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Simulation of the Femtosecond Optical Response of a Solute in Water
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We present microscopic semiclassical simulations of the femtosecond nonlinear optical polarization
(P"') of a solute in water. P"' is dominated at short times by intermolecular vibrations that cannot be
accounted for by the Bloch equations. The applicability of the Bloch, stochastic, and Brownian oscillator
models to the interpretation of photon echo and pump-probe measurements is discussed. We find that
only microscopic semiclassical simulation and the Brownian oscillator model can account for the essen-
tial features of P' '.

PACS numbers: 42.65.—k, 78.20.—e

Femtosecond nonlinear optical spectroscopy of dyes in

liquids cannot be interpreted using the Bloch equations.
The system has a multitude of relaxation time scales and
in general they cannot be considered to be either infinitely
fast (homogeneous broadening) or infinitely slow (inho-
mogeneous broadening) on the experimental time scale.
This state of affairs was recently highlighted by photon
echo (PE) measurements in polar liquids [1,2]. The
nonexponential decay of the PE found in these experi-
ments indicates that the Bloch level of description is

inadequate. The origin of the non-Bloch behavior in

liquids is the continuous distribution of solvent time
scales, rather than the strong field effects related to the
Rabi frequency observed previously [3].

In this Letter we present a microscopic semiclassical
simulation [4,5] of the nonlinear polarization P of a

dye in water. We reproduce many essential features of
the recent experiments, including the non-Bloch behavior
of the photon echo signal. We use the results of our
simulation to test the Brownian oscillator model [6], the
stochastic model [7,8], and the Bloch equations. This al-

lows us to determine the level of theoretical modeling

su%cient to interpret these recent experiments. Previous-

ly, photon echo signals in polar liquids have been inter-

preted using the stochastic model in the limit of an over-

damped solvent [1,2]. Our simulations show that inter-

molecular vibrations are very important in the short-time

optical polarization of a solute in a polar liquid. We find

that only the Brownian oscillator model and microscopic
simulation can reproduce the essential features of the

nonlinear optical polarization of a solute in a polar liquid.
The present microscopic semiclassical approach is de-

rived by taking the classical limit of exact quantum ex-
pressions for P [4,5]. It takes into account a distribu-

tion of solvent time scales and the difference between dy-

namics in the ground and excited states of the chromo-

phore. The Brownian oscillator model is a limiting case
of the microscopic semiclassical theory applicable when

the ground- and excited-state dynamics are similar. The
stochastic model, in turn, can be derived from the
Brownian oscillator model by assuming an overdamped
solvent and neglecting the effect of the solute on the sol-

+4(E'(e~ )
+

rlJ 2rjj

[2 ai+ ~j
2rt'J

where r;J is the distance between atoms i and j. The sim-

ple point charge-enhanced potential [9] provided param-

eters appropriate to water. The solute had one Lennard-

Jones site (qi 0) at the molecular center of mass with

e=70 cm ' and tT=4 A. The Lennard-Jones site was

vent. This means that solvation dynamics is completely
missed. Finally, the Bloch equations may be derived
from the stochastic model by assuming that the solvent

has only infinitely fast and infinitely slow time scales.
The four methods thus constitute a hierarchy of approxi-
mations.

In our simulation the solute is assumed to have two
relevant electronic states, lg& (the ground state) and le)
(the excited state). The Hamiltonian for this system in

the presence of an electric field E(t) is HT H —VE(t),
where

H = lg&H, (g) &g I+ le&H. (g)+ ~. &el

and V =le&p&gl+lg&@&el. Here Hg and H, are the adia-
batic Hamiltonians of the solute plus solvent system. The
set of all nuclear positions is represented by the vector Q.
co,g is gas phase 0-0 absorption frequency of the solute.
Below, we neglect the dependence of the dipole operator
on nuclear position (Condon approximation), the internal
vibrations of the solute, and the solute motion during op-
tical probing.

Hg and He are of the form Hi T+ V + Vj

where i =g, e, T is the kinetic energy, V is the
water-water interaction (taken to be the same in the

ground and excited electronic state), and V;
) is the

water-solute interaction. Both the water molecules and

the solute were taken to be rigid. Interaction site models

were used for the potential between molecules; i.e., the

jth atom of each molecule was assigned Lennard-Jones
parameters 0'j t.j and a partial chal'ge qj. This leads to
the atom-atom potential form

V (olom-utom) ( )IJ
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taken to be the same in the g and e states. In addition,
the solute in the excited state had two fixed charge sites
(ej =0) with opposite charges of magnitude qi =e located
at positions (0,0, ~0.25 A). This model represents a typ-
ical nonpolar dye molecule with a large dipole moment in

the excited electronic state.
The signal S3pE(t~, tq) in the three-pulse photon echo

(3PE) is given by S3pE(t~, t2) =fo dt3!P (t3, tz, ti)l
where t ] is the delay between the first two pulses, t 2 is the
delay between the second and third pulses, and t3 is the
interval between the third pulse and detection. The ordi-
nary photon echo is a special case of the 3PE: SpE(t~)

S3pp(t ~, t2 =0). P can be expressed as a sum of two

terms [6]: P (t3, t2, t)) =P„(t3,t2, t() +Pg (t3, l2, t)).
P has the following interpretation: The first pulse

sets up an optical coherence in the sample. During t ~
the

evolution (and dephasing) of this coherence occurs. The
second pulse converts the optical coherence into a ~opula-
tion on either the ground (Pg ) or excited (P„)elec-
tronic state. During t2 thermal fluctuations occur and the
system relaxes toward equilibrium. This relaxation leads
to the Stokes shift in P, . The third pulse converts the
population back into a coherence, which dephases during
the t 3 evolution.

The microscopic semiclassical approximation for P
[4,5] (for pulses that are short compared to pure dephas-

ing and molecular time scales) is

(3) 612+(3 Il
(t3, tq, t~) = dgdPexp i, U(g[t', t~l)dt' exp —i „U(g[t'])dt' p (Q,P),

( ) I
t2+i3 f Il

(t3, tz, t~) =g dgdPexp i„,U(Q[t'l)dt' exp —i„U(Q[t'])dt' p (Q, P).
(2)

Here U= Vg
—V, . pg is the classical Boltzmann

distribution of the g potential surface. Q[t] is defined as
the coordinate of initial condition (Q,P) propagated for a
period t with classical mechanics on the ground-state (g)
surface. Q[t2, t~] is defined as the coordinate of (Q, P)
propagated for a time t ~

on the g surface, and then time
t2 on the e surface.

We evaluated Eq. (2) by performing a constant-energy
molecular-dynamics simulation with 100 water molecules
and 1 solute. Periodic boundary conditions were used,
with the box size adjusted to give a density of 1 g/cm .
The reaction field method [10] was used to correct for the
presence of the long-range Coulomb forces. Because of
the ergodicity of the fluid, we were able to generate initial
conditions (Q,P) by taking samples at intervals along a
single trajectory on the ground potential surface. This
"base" trajectory was generated by starting from a ran-
dom initial condition and then performing a Monte Carlo
equilibration for 30000 cycles. The equilibrated config-
uration was used for the initial coordinate of the base tra-
jectory. Initial velocities for the base trajectory were
chosen from the Boltzmann distribution. The base trajec-
tory was run for a time of 120 ps using a time step of 0.9
fs. The coordinate along the base trajectory gave Q[t]
Every 256th step, a secondary trajectory was run on the
excited-state surface for 1024 steps. This served to gen-
erate Q[t2, t ~]. The total length of the simulation, includ-
ing both base and secondary trajectories, was 600 ps.

We first consider the ground-state and excited-state
dynamics generated by the simulation. The autocorrela-
tion function of U(g[t J), C(t) =(U(Q[t])U(Q[0]))—(U(g[0]) ) (where () denotes thermal expectation
value), is directly relevant to spectroscopic measure-
ments. Within the Brownian oscillator model all spectro-
scopic observables are controlled by this autocorrelation
function [6]. The mapping onto the Brownian oscillator

model was achieved by attributing the classical simula-
tion to the symmetrized correlation function C(t)
+C( —t), and using the fluctuation-dissipation theorem
to get the complex C(t) [6]. The stochastic model direct-
ly attributes the classical simulation to C(t) which is
therefore taken to be real [6]. C(t) was evaluated along
the base trajectory described above.

Figure 1 shows C(t) for the solute in water. C(t) is
clearly in the intermediate modulation regime, where
v'C(0) is of the same order of magnitude as the decay
rate of C(t) This is i.n accord with recent experimental
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FIG. I. Left scale: solid line, the autocorrelation of the ener-
gy gap C(t); dotted line, fit by six Brownian oscillators. Right
scale: (U(Q[t, OJ)1.
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results [1,2]. C(t) shows a fast (period of 45 fs) vibra-
tional component of the solvent relaxation [11]. The
time-scale separation into very slow and very fast terms
assumed by the Bloch equations is not apparent in the ac-
tual C(t) I.n the Brownian oscillator model, C(t) is the
sum of N terms: C(t) =C(0)g;P;C;(t) [6]. Here P; is
the normalized weight of oscillator i C;(t) depends on
the oscillator's frequency co; and damping y;. Shown in

ig. I is a fit to C(t) based on six Brownian oscillators.
The parameters used (P;, ro;, y;) were (0.55, 135,539),
(0.18,817,277), (0.08,602,243), (0.07,452,439), (0.06,
379,420), and (0.04,49,752), where co; and y; are given in

cm '. C(0) =4.6X 10 cm
Figure I also shows (U(Q[t, O])) found upon excitation

from the ground state to the excited state. Compared
with the ground state, the excited-state dynamics sho~s a
more prominent slow relaxation; while C(t) has relaxed
to within 5% of its asymptotic value with 500 fs,
U g[t,0])) has relaxed only to within 35% of its asym-i s asymp-

totic value of =3400 cm ' within 500 fs. According to
the Brownian oscillator model, (U(Q[t, 0]))ee C(t). The
departure from this condition demonstrates that the
Brownian oscillator model does not give a quantitative
description of excited-state dynamics.

Linear and nonlinear spectroscopies provide a wide

variety of "windows" onto the ground- and excited-state
dynamics discussed above. PE, 3PE, and pump-probe
spectroscopy probe diA'erent parts of P ' and the under-

lying molecular dynamics. We begin our analysis with

linear optics: The inset of Fig. 2 shows the ordinary ab-

—6 —4 —2 0 2 4 6

sorption and Iluorescence spectra, calculated by Eq. (2).
The frequency m is shown relative to m,~. Both spectra
are broa and featureless, and hence cont l ttl d-
ai e ynamical information. The fluorescence displays

a Stokes shift of about 3400 cm ' to the red of the ab-
sorption line, while the Brownian oscillator model pre-
dicts a Stokes shift equal to 2200 cm '. The Stokes shift
is missing in the Bloch equation and stochastic ap-
proaches.

In Fig. 2(a) we show the PE calculated with the Pg
term of Eq. (2) only [the quantum expression [6] for P'
yields P (3s)(t3, tq=O, t~) =P„(t3,tg=0, t~)]. The initial
rise time is due to the finite inhomogeneous broadening in
this system; in the limit of larger in homogeneous
broadening the induction time decreases. Nibbering,
Wiersma, and Duppen [2] have observed a similar tran-
sient in the PE signal of sodium resorufin in dimethyl-
sulfoxide. Also shown in Fig. 2(a) is the best fit of the
Bloc equations to our simulated results. Cl l h

oc equations do not oAer an adequate description of
the initial transient.

Finall Fiy, ig. 2~a&~ gives the results of mapping the
present simulation onto the Brownian oscillator model
[61. These results closely match those of Eq. (2). The
Brownian oscillator model does best at predicting spec-
troscopies relating to ground-state fluctuations such

e PE, since it is derived by an expansion about the

S(t ) show

ground-state dynamics. Figure 2(b) displ I S( ).isp ays n t] .
sho~s a pronounced nonexponential decay at long

times, in contrast with the exponential deca redicted b
e oc equations. The failure of the Bloch equations

is due to the lack of time scale separation in C(t)
Figure 3(a) shows the calculated 3PE signal. The

t 2 =0 section of the 3PE corresponds to the PE. The 3PE
clearly shows the vibrational nature of the solvent dynam-
ics during the t2 period, in contrast with the PE. Pump-
probe spectroscopy (PP) is closely related to the 3PE.
We consider impulsive PP, where the pump and probe are
ultrashort and the resulting emission is spectrally dis-
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VIG. ~. (. )(a) The two-pulse photon echo signal. Solid line,
calculation of E . (2) dq. ( ); dotted line, cumulant calculation; heavy
dotted line, best fit of Bloch equations to the PE signal. (b) As
in (a), but the logarithm of the signal is shown. Inset: Absorp-
tion and fluorescence.

FIG. 3. (a) The three-pulse photon echo signal. (b) The im-

pulsive pump-probe signal.
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FIG. 4. The nonlinear polarization ~P (t3, tq, t~)~ . The
color map used is also shown. The values of ~P ~

were

mapped into colors with the color map shown.

persed. The signal is

Spp(to3, tz) =Re e ' 'P (t3 t2 t 1 0)dt3.

Figure 3(b) shows Spp for the present system. At t 2 =0,
Spp is the same as the ordinary absorption line shape. As
tz increases, the excited-state term shifts to the red, lead-
ing to a broadening and a growing asymmetry in the
spectrum. The Stokes shift of the excited-state term is
not predicted by the Bloch equations or by the stochastic
model.

PP and PE are complementary special cases of the
3PE. The 3PE probes the full nonlinear polarization
P (ti, t2, t3), whereas the PP depends only upon the
t~ =0 plane of P, and the PE depends only on the
I2=0 plane. In physical terms, the PE probes the decay
and rephasing of a coherence, whereas PP measures the
dynamics of an excited-state population. The 3PE, how-
ever, contains both the coherence decay and rephasing
and the population dynamics.

Nonlinear spectroscopies measure various aspects of
P (t ~, t2, t3). A complete measurement of P as a(3)

function of its three time arguments could be done by us-
ing three ultrashort pulses followed by a fast detection of
the signal. Figure 4 shows the complete ~P (t3, tq, t ~) ~

.

We first consider the tp=0 plane. The PE signal is deter-
mined by P in this plane. P is seen to show an echo
at times t3=t ~, which means that rephasing of the initial
coherence occurs. The t ~

=0 plane of P corresponds to
the PP signal. As t2 is increased P decays faster with

t3. This corresponds to the broadening of the PP signal
as the Stokes shift begins, since t3 is the variable associat-
ed with the probe absorption line shape.

Finally, we consider P for nonzero t~ and t2. As t~
is increased from 0, relaxation processes prevent rephas-

ing from occurring; P is less peaked about t~ =t3
Only at very short times can the thermal distribution of
solvent environments be considered inhomogeneous; later
spectral diffusion during t2 destroys the echo. We also
note that the vibrational dynamics of C(t) is reflected in

the oscillations of P
In conclusion, the essential features of recent experi-

ments in polar liquids, such as the non-Bloch decay of the
PE signal and dynamics in the intermediate modulation

regime, were captured in the present simulation. We
were able to clarify the relation between various spectro-
scopic probes and the underlying molecular motion. In
particular, we found that PP and 3PE experiments are
more sensitive to vibrational dynamics than PE experi-
ments. Finally, our analysis of P (t3, t2, t~) shows that
spectral diffusion during the tz interval very rapidly de-

stroys the echo character of the polarization.
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