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Quantum corrections to the mean-field equation of state for nuclear matter are estimated in a lattice
simulation of quantum hadrodynamics. In contrast with the standard coordinate space methods used in
lattice QCD, the calculations are carried out here in momentum space and on nonhypercubic (irregular)
lattices. The quantum corrections to the known mean-field equation of state were found to be consider-
able.
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Wilson's fundamental paper [I] and the pioneering
work done by Creutz and others in the late 1970s [2-4]
paved the way to a numerical treatment of quantum
chromodynamics on finite space-time lattices. In the fol-
lowing decade, the field of lattice QCD experienced a big
boom [5]. Similar techniques were then applied to other
quantum field theories, such as QED [6] or scalar tt [7];
the present paper reports on the first application of lattice
Monte Carlo methods to the theory of quantum hadro-
dynamics (QHD) [8,9].

Quantum hadrodynamics is a renormalizable, relativis-
tic quantum field theory, designed for the description of
the hadronic phase of nuclear matter. During the last de-
cade, it has become one of the most widely used nuclear
models, and was successfully applied to many problems in

nuclear and astrophysics [9]. However, most of the work
done in the framework of this theory so far was based on
the mean-field approach (cf. [9]), and a major motivation
for the present investigation was to find out "how good"
the mean-field approximation actually is. More precisely,
we wish to estimate quantum corrections to the mean-
field equation of state for nuclear matter.

The straightforward transcription of quantum hadro-
dynamics on a lattice, using the standard finite-diAerence
expressions for the kinetic terms, Wilson's method [10] to
avoid fermion doubling, and the prescription given in [11]
for the introduction of a chemical potential, led to intoler-

ably high discretization errors already for the decoupled
theory of a free Fermi gas [12]. A relative error of
20%-30% on a 20 hypercubic lattice would mean a devi-
ation of several 100 MeV in the energy per nucleon [13],
which was unacceptable. (A discretization error of the
same order of magnitude was found in a similar investi-
gation concerned with lattice QCD [14].)

The numerical error for the decoupled theory could be
reduced by 1 order of magnitude after passing to a
momentum-space formulation [12], and at the same time
we had automatically solved the fermion doubling prob-
lem [10,15]. The usual coordinate approximation

is equivalent to
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in momentum space. Fermion doubling arises from the
zeros of the sine at p„=+tr/hx. In a momentum-space
lattice formulation, p„arises instead of the sine term,
vanishing only at the origin as it should be. Moreover,
the dominating part of the discretization error, originat-
ing from the difference between sin(Axp„)/hx and p„,
disappears.

The Euclidean action for quantum hadrodynamics in

momentum representation reads
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where y, p, and V, are the Fourier transforms of the nucleon, the scalar boson, and the vector boson field, respectively.
Note that the reality of p(x) and V, (x) implies that p( —p) =p(p) and V, ( —p) =V,(p). (Complex conjugation is

denoted by z z. )
Passing to a discrete notation, we obtain (using the summation convention of Einstein)

I I

S,'.„„;„=lt,(M„)„„lt„+—,
'

y „(M,)„„y,+ —, V „(M,)„„V; (2)
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with the matrices
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The free action of a scalar boson p of mass m, and a vec-
tor boson V, of mass m,„aswell as the Yukawa couplings
to a fermion field y with mass M, are easily recognized.
The y are Euclidean Dirac matrices [15] and (Ap)
denotes the elementary lattice volume element. Dirac
and isospin indices are suppressed. A chemical potential
can be included in the "naive" way [11] by adding
—py4bpp(hp) /(2x) to the fermion matrix M~. Eu-
clidean metric is understood throughout, p,p, =p

~
+

+p 2

The obvious disadvantage of the momentum-space for-
mulation is the nonlocal interaction term: The original
(space-time) expression

d'x y(x)y(x) y(x)

has turned into

(6)

d4 d4
, w(p) O(p —p') w(p') ~ (7)

and similarly for the vector boson. On the lattice, this
leads to a fully occupied fermion matrix M~. Its inverse
and determinant have to be calculated iteratively during
the Monte Carlo process, and this will be the most time-
consuming step in the numerical procedure.

Besides the advantages already mentioned, the mo-

mentum-space formulation also allows for an easy reduc-
tion to mean-field theory, by just suppressing all nonzero
Fourier components of the meson fields. Then the fer-
mion matrix is block diagonal (diagonal in p) and a
mean-field lattice calculation with only five nonzero
meson field components (ptp-0& and Vtp 0~) is easy to
do. In this way, the analytically known mean-field results
for quantum hadrodynamics could be reproduced to
within —1% in a cold start, self-consistent Monte Carlo
calculation.

The significance of this mean-field lattice calculation is
twofold. First, the same computer code is used as for the
full calculation, except that the majority of meson field
components is set to zero. This provides a convenient
check of the whole numerical procedure. Second, we will
define the quantum corrections to the mean-field equation
of state to be the difference between the lattice results
with the nonzero Fourier components of meson fields
switched on and off, respectively. In this way, one can
hope to reduce that part of the systematic error which is
due to the lattice geometry.

Two more points deserve a comment before we come to
a discussion of the numerical results.

(I ) An irregular (nonhypercubic) lattice geometry
turned out to be favorable. In particular, we chose a
"spherically symmetric" distribution of the spatial mo-
menta inside and outside the Fermi sphere, and used a
cubic distance law in the timelike direction. It follows
from (7) that the meson fields must be known for all
differences p —p', ~here p and p' are any two points of
the baryon lattice. Hence, an irregular baryon lattice im-

plies a meson lattice of the size (No. of baryonic lattice
points) /~ 9 ), where Q is the symmetry group of the
baryon lattice [16].

(2) In order to avoid ultraviolet divergencies, the
negative-energy baryon states are eliminated. This can
be achieved in a lattice formulation by subtracting from
the effective action

S„s=Sf„,[y, V, l —Tr In' [y, V,]

as well as from the baryonic observables

(8)

Tr{8(M„"[y, V 1)

wj+hpq for pq =yq, Vq (10)

the respective expressions at vanishing chemical potential

p =0.
This method of regularization is applied to both the

mean-field and the full calculation. Thus, our lattice re-
sults will reAect many-body effects of an interacting Fer-
mi gas of nucleons to all orders, take into account the
correct relativistic kinematics, but will neglect the influ-

ence of the negative-energy baryon spectrum.
Starting from a 576-point, irregular baryon lattice with

cutoff 1.5kp, we obtained a meson lattice with -83000
nodes and cutoff 3kF, on which a Monte Carlo simulation
of the scalar and the vector field was carried out. %e
used the standard Metropolis algorithm [17,18] with a
particular adaption to the momentum-space representa-
tion which is described below.

The average Monte Carlo hit amplitude was adjusted
locally, i.e., separately for each lattice point in such a
way that an average acceptance rate of 0.5 was obtained.

To determine the change in the effective action (8) that
would result from
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FIG. 1. Mesonic contributions to the energy density during a

300 sweep production run. (The contribution from the sigma
meson is plotted with the opposite sign. )
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were calculated for all field variables before a sweep, and
multiplied by hp~ at the time of the sweep. For the free,
quadratic meson action, the evaluation of (11) is trivial,
and for the fermion determinant we used the identity

0.2 0.4 0.6 0.8 p Pm-sj

FIG. 2. Quantum corrections for the binding energy per nu-

cleon. Lattice simulation in momentum space. The crosses rep-
resent the mean-field results, the errors are statistical only.

TrlnM~[p] =Tr M~
' [p]

Fj
(i 2)

The exact inverse M~
' was calculated before each sweep,

and the trace in (12) is easy to evaluate since 8M~/t)tr~ is
a sparse matrix. With a single update of M~ ' before the
sweep, the Monte Carlo process is obviously more reliable
for the field variables which are treated first than for
those treated last. In order to compensate this effect, the
sequence of the p~ during a sweep was randomized. The
quality of this approximation has been tested by compar-
ing to runs with more frequent updates of the inverse, and
it was found to be reasonably good.

The lattice action, as well as other observables (baryon
energy and density, meson energies), became stable after
—100 warm-up sweeps (cf. Fig. 1), the runs were then
continued another 200 sweeps for the measurements.
Since the sampled observables after the initia1 warm-up
became quite stable, this relatively small number of mea-
surements was enough to obtain a suSciently small sta-
tistical error.

All calculations were carried out in the partially
quenched approximation, neglecting the imaginary part
of the effective action in the Metropolis algorithm. At-
tempts to include it by grouping it with the observables,
i.e. , sampling

o [ ]
I I lllS~pg') (i 3)

instead of 6[p] alone, led to similar results as in the par-
tially quenched case up to a reasonably high number of
sweeps. Eventually, however, increasing oscillations orig-
inating from numerical instabilities prevented us from ob-
taining the desired statistics.

The observables baryon density p~, baryon energy den-
sity t.z, sigma energy density e, and omega energy densi-

ty e„were sampled in 11 lattice runs with 300 sweeps
(100 warm-ups) each, and the energy per nucleon was
calculated as

El+ (&B+en+ Erg)lpB ~ (i 4)

The result is shown as a function of pq in Fig. 2.
The first important observation is that the fully in-

teracting system still saturates. Comparing with the
mean-field calculation we observe that the quantum fluc-
tuations lead to an additional saturation energy of about
85 MeV, while the saturation density remains about the
same. Note that we take the lattice mean-field calcula-
tion as a reference, because in this way we hope to ex-
clude at least part of the systematic error, caused by the
lattice geometry. The fact that the inclusion of quantum
fluctuations leads to additional binding is what one ex-
pects from the variational principle. The amount of the
decrease certainly represents a lower limit, but how much
of it was lost due to restrictions of the lattice size is one of
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inating part is clearly included.
Taking into account the "natural" cutoff of the nuclear

interaction at —1 GeV due to the finite nucleon size
(which is not correctly included in quantum hadrodynam-
ics) a considerable extension of the momentum cutoff
seems to be unphysical. To verify this point, calculations
on larger lattices including nucleon form factors are
planned.

This work has been supported by Deutsche For-
schungsgemeinschaft (SFB 201). The authors also grate-
fully acknowledge the computing time granted by the
Jiilich Supercomputing Center (HLRZ).

FIG. 3. The interacting vector meson field (first and second
components) after 250 sweeps. The elevated rectangle shows

the extension of the lattice. The spatial momentum is on the
horizontal axis, the timelike component in the depth. The
cutoffs are 828.8 MeV in the spacelike and 28.6 GeV in the
timelike direction.

the most important questions to be investigated in the fu-
ture. Looking at the meson fields during run time, how-

ever, gives a clear indication that the largest part of the
quantum effects was included: Snapshots of the field
configurations have been taken for all meson fields at
various stages of the Monte Carlo run and examples are
given in Fig. 3. Similar pictures were obtained for all
field components and at all times. Obviously, some field
strength is cut off in the spacelike direction, but the dom-
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