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Chiral Symmetry Tests in Nonleptonic K Decay
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The existence of empirical tests for the validity of chiral perturbation theory in the analysis of nonlep-

tonic kaon decay is pointed out in the context of A 2n, 3x processes. Comparison with existing data
reveals good agreement with the chiral constraints.
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Modern particle physics is based on the validity of
QCD as the basis of quark-quark interactions. The study
of low-energy processes is thereby severely hindered by
the nonlinear and nonperturbative nature of gluonic in-

teractions, limiting the possibilities for rigorous calcula-
tions. This situation has been somewhat obviated, howev-

er, with the development of methods such as chiral per-
turbation theory (ChPT) which rely only on basic sym-

metries of the strong interaction and which therefore are
not restricted by the calculational limitations [1]. There
is a corresponding price in that ChPT represents an ex-
pansion in energy-momentum and is therefore only useful

for processes with E & A~, where A~=1 GeV is the chiral
scale parameter [2]. However, for such processes ChPT
provides a reliable and systematic calculational scheme.
The formalism associated with mesonic processes has
been carefully developed in a series of papers by Gasser
and Leutwyler and successfully applied to a wide range of

low-energy processes by these and other authors [3]. Re-
sults are generally in excellent agreement and the validity
of ChPT can be tested in specific relationships between
empirical parameters [4].

A corresponding formalism has been developed for the
sector of nonleptonic weak interactions and also applied
to a range of diA'erent decays [5,6]. In this case, howev-

er, the data base is considerably smaller and empirical
tests are scarce. The purpose of this Letter is to show

that specific tests for the validity of chiral methods exist
within the K 2z, 3x sector, and to confront such tests
with experimental data. In the following we present a
brief review of the chiral formalism and K 2n, 3z phe-

nomenology while constructing these chiral consistency
checks. The significance of our results is summarized in a

brief concluding section.
First consider the experimental situation. For K 2n

we can perform an isospin decomposition [7,8]

A (K"-~ tr"tr") = —v I/3An8" s~pK" —(I/J6)Aq(s3/pr K"+s3/~r 'K"),

where the Ai represent weak decay amplitudes for decay into a zn final state of total isospin I with phases contained by

the Fermi-Watson theorem

A, -=i
I A/ I expi~t . (2)

A fit to experimental data yields the values given in Table I, with the relative phase between I =0 and 2zz final states

determined to be 6p —60= —57'+4'. Here s]/~, s3/2 are "iso-spurions" with i sy2=0, which account for the quantum

numbers of the nonleptonic weak interaction [8],

s~/2 —(0 —
I ), s3/2 e„(—,

' 0)+e,, ( —,
' i 0)+e-(0 1) .

Similarly for K 3tr we can make an isospin decomposition [7]

A(K" tr'tr"tr') = —8's~pr'K"F~/q(s„, st„s& )+6'"s'3/2K"F3/2(. sg sty, sc)

+ie'""(s'3/2r "K"+s3/~r'K")G3/q(s„st„s, )+permutatio. ns,

(3)

(4)

where Bose symmetry requires

+1, f=Ft,
f(s„,st„s, )=2 tcf(st„s„s, ) w. ith AN = —1, =G3/~,

with s; =(k —q;) '-. We parametrize these functions by keeping terms up to quadratic order in s;:

J2F/ (s„st„s,. )—:at —Pt V, + crt gt ( Y,. + —,
' X,.-) + at (t ( Y,. ——, X,. ),

J2Gy~(s„st„s, ) = (I/J3) @AX,
—

~ gqX, . Y,

(s)

(6)
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TABLE I. Measured and fitted values for K 3x expansion parameters, all given in units of
10 " (Rel'. [9]).

Expt.
Lowest order
fit [Eq. (9)I

Fu11 fit

[Eqs. (9) and (12)]

Ao (keV)
~. (keV)

al
a&

0.4699
—0.0211

91.71
—7.36

—25.68
—2.43

2.26
—0.47
—0.21
—1.51
—0.12
—0.21

+ 0.0012
~ 0.0001
+ 0.32
+ 0.47
~ 0.27
~ 0.41
+ 0.23
~ 0.15
+ 0.08
+ 0.30
~ 0.17
~ 0.51

0.4698 (fit)
—0.0211 (fit)
74.0
—4. 1

—16.5
—1.0

1.8

0.4698 (fit)
—0;0211 (fit)
91.8
—7.6

—25.6
—2.5

2.5
—0.6
—0.02
—1.5
—0.05
—0.08

where I= &, &, with

1, I=&,I

O'I = —2 I= —'
Sc' Sp Sy Sa

Y. = L.= sp= — s .J
m m~ J

(7)

If the phenomenological parameters a;, P;, etc. , are taken
to be approximately real (since xmas phase shifts are
presumably small) a phenomenological fit to available
K 3n data reveals the values given in Table I.

To second order in momentum the chiral Lagrangian
which describes nonleptonic weak decays must be of the
form [5,6]

X~s i =cqTr) 6L„L"+c3r//; Trgj'L„Trgl"L" (8)

with l „=iU t r)„U representing the left-handed weak
current. Here

U =exp g )I,JPJ
Fp i-i

is the chiral matrix, with A~ representing the SU(3) ma-
trices and Fp being the pion decay constant to lowest or-
der in chiral symmetry. Also, (gj')&1=b;IBJ& are 3x3
flavor matrices, while A, 6 =g3 +g2 and t ji,

' project out the
octet and 27-piet components of the weak interaction, re-
spectively. By expanding in powers of the pion field, we
can determine the phenomenological parameters Al, a;,
P;, ); in terms of c2,c3 [9]: hl = 2,

5 —14'mxP3= —; rip c3,
1
—

g

15 3 —2ri
mx y3

= —
rip c3,

I —
rI

(9f)

(9g)

where we have defined p= m~/F, Fg —and ri—=m /mx. At
the two-derivative level then we have five requirements of
chiral symmetry —i.e., with c2,c3 determined from

iApi, iA2i we predict the values shown in column two of
Table I. Since loop effects and/or terms arising at the
four-derivative level produce corrections of O(mx/Az)
-25% we would expect general agreement between the
theoretically predicted and experimentally determined
values of the five K 3z parameters but only up to this
level of precision, and this is indeed confirmed with the
data. Actually these results are not at all new and follow
from current-algebra-PCAC (partial conservation of
axial-vector current) requirements first written down
nearly a quarter-century ago [8]:

lim A (K" n'z"z")
q' p

= —(i/F )(n'zc"i[1",P ]iK")+O(m ), (10)
mxAp=i J6F p(1 —g)(cq ——, c3),

mrna, = —, p(c2 —
—, c3),

m~Pi = np(c2 3c3);— —

hf= ~,3

mxAq=i(20/J3)F p(l —tI)c3,
20

mKQ3 9 pC3

(9a)

(9b)

(9c)

(9d)

(9e)

where I' represents the isospin operator. Thus, e.g. , Eq.
(10) requires, for K x+x x,

lim (ai —Pi Yp) = —(i/2F )J2/3Ap,
q0 p

lim (al —Pi Yp) =0,
q

— +p

whose solution is given by Eqs. (9b) and (9c). Similarly
one can reproduce Eqs. (9e)-(9g) by working in the
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hl = —' sector.
What fs new is the ability to identify chiral symmetry structures at the loop and four-derivative level. The most gen-

eral form for the four-derivative AS=1 weak Lagrangian has been given by Kambor, Missimer, and tyler [6]. The
form is lengthy, involving eighty-two separate terms, and will not be required here. What is needed is simply the general
result f'or the contribution from weak counterterms of four-derivative form and O(mir) which has been recently given
[9, io]: ~l = —,',

Ao = i ~j d2/3 F p( 6 i+ G2), ai = .. 7 p(G i +G2+G3), pi =
9 rip( 2G i 2G2+G4),

(12a)
(i=hi)'pG3, (i = ——. n'pG4;

A 2 =i(20/3 J3)F„pG2, a3 = =.-", p(G2+2G ~), p2
=

—,'„- tip(10G2+ Gi), y3
= —(5/443) rip(6G2+ G2),

6 = -: n'pG5, 42 = —-'4 n pG6, -43 = —"n'pG2
(i 2b)

Here G;, i =1, . . . , 7, represent various combinations of
four-derivative counterterms, ~hose explicit form can be
found in Ref. [9]. The important point is that these
order-four counterterms can be determined empirically—a general coeScient in the K 2z, 3z isospin decom-
position can be written in the form ti a i (i 6a)

. . . , Lio(p) given by Gasser and Leutwyler [3]. The
chiral relations given in Eqs. (12) are seen then to require
the following five relations [to O(m, /mar)]: 41 = -',

Ai Ai(2) +Ai(2) ( )+ w kAi(4)( )+ sl Ai(4)( ) (13) 4i =:t)Pi ' (16b)

2c~ —=c2 ——„mgGi, c3=c&+ ~ mgGp. (i4)

We can then isolate the dimension-four weak counter-
terms by defining

where ""A&,„„. ("Ai,„,.) is the tree-level contribution from
the weak (strong) Lagrangian of order 4 and Ai „(p) is

the one-loop correction arising from L&~ =]. The param-(2)

eter p represents the scale parameter introduced when re-
normalizing the dimension-four counterterms and the
sum of the last three contributions is p independent. The
loop corrections have been calculated, yielding the values
given in Ref. [9]. Using these values, one can then fit to
the empirically determined parameters in order to deter-
mine the counterterms G~, . . . , G~. The result is the fit

sho~n in Table I, column 3, which is certainly impressive
and gives confidence in the validity of the chiral ap-
proach. One might worry that the quality of the result is

simply a consequence of the many free parameters
Gi, . . . , G7. However, we will show that this is not the
case and that parameter-free constraints and predictions
do exist.

One can go beyond this global fit to generate a set of
specific tests which are independent of the chiral counter-
terms. Specifically, the G],G2 dependence can be ab-
sorbed by identifying new parameters

g3
= —„ iia3,

&.~
= —

4 riP3,

(16c)

(i 6d)

TABLE I I. Predicted and measured values of quadratic
A -- 3z parameters, all given in units of 10 ". The uncertain-
ties quoted in column two include experimental error bars as
well as uncertainties in the strong chiral coe%cient and an esti-
mate of neglected Q(m;/mq ) terms.

j2 = —(3J3/2) ri y3 . (i6e)
These conditions result simply from the validity of the
ChPT approach at the four-derivative level and the extent
to which they are satisfied provides a very nontrivial test
of chiral methods. The results of such a test are shown in

Table lI and are seen to be very successful for the two
Al = -' relations Eqs. (16a) and (16b). The data are not

good enough to say anything conclusive about the corre-
sponding hl = — relations Eqs. (16c)-(16e) although
there could be a possible problem with Eq. (16c). The
significance of these results will be assessed in the con-
cluding section. Ho~ever, before doing so it should be
noted that the physics behind these relations is easily dis-
cerned from the feature that A' arises strictly from A&,'„„-,

i.e., four-derivative terms. Since contributions to Eq. (6)

Ai(2) Ai(2) ( ) siAi(4) ( ) (is) Measured experimentally Predicted from Eq. (16)

Note here that A' are completely determined since A„'„~t

are given in terms of the experimental fit, A &,„„and
„(p) are known in terms of the K 2ir parameters c2

and cq, respectively, while "A&„.„are determined in terms
of the known strong dimension-four parameters Li(p),

—0.47+ 0. 15
—1.51 + 0.30
—0.21 + 0.08
—0.12+ 0. 17
—0.21 + 0.51

—0.47 + 0.18
—1.58 + 0.19
—0.011 + 0.006

0.092 + 0.030
—0.033 ~ 0.077
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must have the form

Fl(s„sb,s&)=kik q, . q, qs+k2(k q, qt,
.q, . +k qsq, q, )=mx + [I ——', r) (Y, + —,'X, )l

18 9

+ —,', m,'(k', —k', ) [~Y„—-', g'(Y,' —
—,
' X„')],

G 3p(sg, ss, s, . ) =k3(k. q, qs q„—k. qt, q, .q,. ) = —,', mzk3(gX„+3ri X,Y,),
(i 7)

and the size of the quadratic term is predicted within the
chiral symmetry scheme,

= —0.006 ~ 0.002 .
I 2

a]+a3 (i9)

Finally, it goes without saying that it would be of great
interest to acquire the same sort of high-quality, high-
statistics data in the remaining K+ 3x and KI

x+x x systems in order to enable a precision test of

we see clearly then that there exists a required relation
between quadratic and constant, linear contributions aris-
ing from X~s-~ [11]. There exist five such relations and
these are just those recorded in Eq. (16). Note also that
since such four-derivative terms vanish when any soft-
pion limit is taken, there exists no constraint on such
terms arising from the K 2x sector.

In conclusion, we have pointed out the existence of ten
independent tests for the validity of the ChPT approach
to nonleptonic kaon decay —five at the two-derivative lev-

el and five more at the level of four derivatives. The
former are well satisfied up to the O(ms/Az) corrections
expected from order-four contributions. The latter are
also well satisfied at the level of -20% for the two cases
involving hl =

& amplitudes. Results are not as good for
the three hl=

& tests. However, this should not be a
surprise, as such terms are found from subtracting two
much larger numbers (the quadratic amplitudes found in

the K+ and KL decay amplitudes, respectively) and are
particularly sensitive to small errors in either analysis. In
addition, electromagnetic eFects have been omitted. In
the K 2z case such eA'ects should not be a problem
[12]. However, a previous estimate of electromagnetic
contributions in the K 3z system has revealed possibly
significant corrections within the h1= —,

' sector [13].
Thus any discrepancy within the quadratic hl =

2 terms
should not be considered problematic at this time.

We emphasize in closing that a particularly important
piece of evidence in this regard should be soon forthcom-
ing in the form of a careful analysis of 2x10 KL 3z
events found in Fermilab E731 [14]. In particular the
decay amplitude must have the form

A(KL 3n ) = —3(a~+a3) —3((~ —2(3)(Y + —, X ),

1

the ChpT within the hI= & sector.
~ . 3
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