
VOLUME 68, NUMBER 12 P H YSICAL REVI EW LETTERS 23 MARCH 1992

Canonical Formulation of the Self-Dual Yang-Mills System: Algebras and Hierarchies
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We construct a canonical formulation of the self-dual Yang-Mills system formulated in the gauge-
invariant group-valued J fields and derive their Hamiltonian and the quadratic algebras of the funda-
mental Dirac brackets. We also show that the quadratic algebras satisfy Jacobi identities and their
structure matrices satisfy modified Yang-Baxter equations. From these quadratic algebras, we construct
Kac-Moody-like and Virasoro-like algebras. We also discuss their related symmetries, involutive con-
served quantities, and hierarchies of nonlinear and linear equations.

PACS numbers: 11.15.—q

I n recent years, classical self-dual Yang-Mills
(SDYM) equations have emerged as a beautiful and

powerful mathematical system, possessing beautiful solu-

tions of instantons [1] and monopoles [2,3] and serving as
an essential tool for analyzing exotic four-manifolds [4].
The SDYM system also possesses many traits of integra-
ble systems such as linear systems [5], infinite nonlocal
conservation laws [6], and Backlund transformations.
Further, many two-dimensional (2D) systems are shown

to be reductions from the four-dimensional (4D) SDYM
equations: sine-Gordon, Korteweg-de Vries, nonlinear
Schrodinger equation, Liouville equation [7], chiral mod-
els [8], and chiral model with arbitrary Wess-Zumino
term [9]. When properly formulated, the 4D full super-
symmetric n & 3 Yang-Mills equations [10] and the full

supersymmetric n ~ 5 conformal supergravity [11] all

resemble SDYM equations. Thus, the SDYM system is

becoming a crossway between 2D and 4D systems from
the integrable-system point of view. All the studies so far
are mainly classical ~ Though the 4D theories possess
many traits of the integrable system of 2D theories, they
certainly will not and should not turn out to be integrable
in the same way as the 2D theories. However, these
beautiful characteristics of integrable systems should be
made best use of in a quantum field theoretical way.
Perhaps in the process we will find a nonperturbative ap-
proach to the 4D quantum field theories. Here we shall
present some useful results in this direction.

In studying the SDYM system, we exploit the fact that
in the J formulation the SDYM equations and action
resemble those of the Wess-Zumino-Novikov-Witten
(WZNW) model. Following the procedure developed in

Ref. [12] for the WZNW model, we construct a canoni-
cal formulation for the SDYM J fields [13]. We derive
explicitly the Hamiltonian and the fundamental Dirac
brackets for J fields that form quadratic algebras. We
also show that the quadratic algebras satisfy Jacobi iden-
tities and their structure matrices, which contain dynami-
cal variables, satisfy modified Yang-Baxter equations.
Following naturally from the quadratic algebras, we con-
struct Kac-Moody-like algebras, Virasoro-like algebras,

and their corresponding hierarchies of nonlinear equa-
tions and linear systems.

Several important features emerge from this 4D
theory: The Hamiltonian is an interactive one; in con-

trast, the Hamiltonian of the 2D WZNW model is free.
The J field can no longer be factorized into the so-called
"left"-chiral and "right"-chiral fields as in the WZNW
model. There are four distinct sets of algebras as com-

pared to two in the WZNW model. Among the algebras,
quadratic algebras are the most fundamental and will

serve as a basis for the future development of quantum

field theory [14,15]. (Our formulation here does not deal

with the globally nontrivial sectors of the SDYM theory. )
Self dual Yang -Mills equa-tions in the J fields [3,16,

17].—We consider the SDYM equations F„,. =e„,,v Fv

(p, v, p, a = 1,2,3,4), where F„,, =8„A,,
—8,,A„+ [A„,A, , ] in

a four-dimensional space with a diag(+, —,+, —)
metric. Using the light-cone coordinates, y=x '+x,
y—:x' —x, z=x —x, and z—=x +x, the SDYM
equations become F,,- =0, F;,= =0, and F,,;, +F = =0.
From the first and second, curvatureless equations, the

gauge potentials have the following representation:

A, . =D '8, , D, A =D '8 D, A;, =D 8;,D, and A=

=D '8=D. For general nxn matrices D, the gauge

group is GL(N). Without loss of generality, we can

choose A;, and A= to be zero, which can be achieved by
the transformations A st Bst =DAst D +D 8' D

—
I

M =y, z,y, z. The nonzero components of the gauge fields

are A, . B,. =J '8, ,J, A B =J '8 J, whe-re J
=DD ' and is gauge invariant. From the third self-dual

equation we obtain the equations of motion for the fields

J(y, z,y, z), 8;.(J '8,.J)+8=(J '8-J) =0, which we

call the "right" SDYM J field equations.
There is another equivalent set of equations. By choos-

ing A, A- 0 and A;. B;, =JQ;,J ', A= 8=
=J9=J ', the equations of motion are then replaced by
what we call the "left" equations, 8,. (J8;,J ' )
+8 (J8=J ') =0, which are just the right J field equa-
tions with the changes J J and y, z y, z, respective-

ly.
Symmetries of SDYM J fteld equations (3,16,17j.
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—The SDYM equations for the J fields are invariant under the transformations J V(y, z)JV (y, z), where V(y, :)
and V(y, z) are arbitrary matrix functions. The symmetry generated by V(y, z) can be understood as residual gauge
transformations for BM, and that by V(y, z) as the gauge transformations for B~ Th. ese symmetries are analogous to
those in the WZNW model, g V(y)gV(y).

A canonical formation for the SDYM Jfields .F—ollowing these hints of the analogy with the WZNW model, an ac-
tion [13] that gives the SDYM J field equations can be constructed:

f p( /2 t
~ r(/2 f I

A =a „dydzdzJ dytr(rl, Jrl;, ,J ) —
J dydzdz„dyJ dptr(J ' t) J[J 8,—,JJ '

t), ,J])
fO ~( /2 t I /2 t I

+ dy dz dz dytr(ll-J tl=J ') — dydz dz dy dptr(J ' t)+[J ' tl=J, J ' t)-Jl)

where a is a dimensional coupling constant.
Any one of the variables y, z,y, z can be chosen as "time. " We first pick y as time. We apply a periodic boundary

condition in the "space" direction of y, J(y,y+L/2, z, z) =J(y,y
—L/2, z, z), but we shall show that physical results are

independent of L When y. is chosen as time, y (space) becomes special and the Poisson and Dirac brackets have a
nonultralocal 6' term in y, yet only an ultralocal 6 term in the other two special coordinates z, z. Here we follow the
same procedure established in Ref. [12] and refer the reader to it for details.

The canonical momenta of the fields J is n, ti=BA/6(tl, ,J,ti) =a(8;,Jp, —et', ), where ep, are defined by

~( /2—a dydzdz dytr(etl, ,J)—:[second term of Eq. (1)].
Equal-time (y) Poisson brackets are

{Jp(y, x),J„p(y,x')j p =0, {tr p(y, x), ir&g(y, x')j p =0,

{tr,p(y, x),J„b(y,x') j p =B,„b'pz+8(y y'+nL—)8 (Z —Z'),

where we used a space vector x=(y, z, z) and 8-(Z —Z')=8(z —z')6(z —z'). The constraints from the definition of
canonical momenta are C,t(xi) =tr, &

—a(8;,J&, —
e&, ), which give an infinite number of constraints, one at each point of

x. We can rewrite the constraints in the following form:

Epp =J,pC, ti
=J,p—tr,p+ a[(J ' 6;,J)pp+ (eJ)p„] .

The Poisson brackets for F.,~ are

{E„(y,x), E&~(y, x')j p
= —2a6„,6,t+6'(j y'+nL)+—(E„,b, q

—6„,E,q)gb(y —y'+nL) 8 (Z —Z'), (3)

Hr = ) d xg„E„—Ap, + d x A„rE,g. (4)

where the superscript T denotes the transpose. We can
separate the constraints into the first-class ones and the
second-class ones, FP =f ' tt'tzdy k,",(x)-E„(x)= 0, S"
=k,„E,„L'FP =0, —respectively. The k„(x)'s are
unknown fields with the boundary condition X,„(—L/
2) =A,„(L/2) =Spy„and determined solely by the condi-
tions of first-class constraints, {F",E,„j = 0, which

implies f' tiztzdy X'„(-'x)g™= tl;6(y -y'+n, L) =—0, with

solution X,„(x)=X,„(y =O, z, z) =g6„, which gives
FP (z, =) =f='t 't.dy E" (-x)

The total Hamiltonian is then Hr = —A „t+fd 'x
x u, E „where A„& is the integrand for the y integration
of the third and fourth terms of the action, Eq. (1). The
functions u, are solutions of the following consistency
conditions: {HT,Eq,j p =0, i.e. , rl, u„= —

8—,=(J 8-J ),
and u,~=@~~+A~~, where A is the homogeneous solution
(thus independent of y) and g is the particular solution.
Now the total Hamiltonian is

(s)

The canonical equations of motion of this Hamiltonian
can be shown to give Euler-Lagrange equations for the
J fields, 8,, (J t);,J ') = {H,J |);,J 'j = —t)-(J t)=J ').
Note that this Hamiltonian is interactive; in contrast, the
Hamiltonian of the WZNW model is free, corresponding
to having only the last term [12] in Eq. (4).

Similarly, we can choose y as time and y as space with
periodic boundary condition and obtain Eqs. (2) and (4)
with J J ' and y y, z z. We then can also choose:or z as times and obtain two other sets of quadratic
algebras. [They are Eqs. (2) to Eq. (4) with the obvious
corresponding changes. ] So, in total, the 4D SDYM sys-
tern is spanned by four different Hamiltonian quadratic
a 1gebr as.

Quadratic algebras of Dirac bracket. s and Kac
Moody -like algebras. —From the canonical formulation
given in the previous section, we can derive the following
Dirac brackets which are quadratic algebras:

{Ji(x),Jii(x')jo =Ji(x)J&i(x')Mi, ii,
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where

M~ ~~
—= —(P~ ~~/2a) —, ge(y y—'+nL)e '"+(I/Q& &~) b (Z —Z'),

n

and g~ ~~=(F~ —F&~)/2a; the superscript T denotes the transpose. The J fields are related to the J fields by a zero-
mode factor J(x)=J(x)exp( yF—/2aL). The bracket of any tensors A&—=ASI and B«=IS—B is defined as
[A~, B~~j,„&s=[A—S I, I SBj,„ps=[A,~,B„sj. The permutation matrix P~ ~~ is defined through the expression
P( (((A(B(()P[ [[ B/A/&, for any matrices A and B, and P& ~&P«& =1. The function e(x) stands for the sign of the argu-
ment x. We will see that the current formed from J, not J, satisfies the Kac-Moody-like algebra. Taking the limit
L ~, we obtain an L-independent result:

lim M~ ~~
= —(P~ ~~/2a) [ & e(y —y') —

& coth(g~ ~~/2)+(I/Q~ ~~)]b (Z —Z') .

One can easily check that the quadratic algebras Eq. (5) satisfy Jacobi identities. The interesting point is that M[
which is now a dynamical quantity and has nonzero brackets with J, [M~ ~~, J~~~jo =J~~~M~ ~~ ~~~, can be shown to satisfy
modified Yang-Baxter relations, [M~ ~~, M~~~, ~]+[M~~,~~~, M~ ~~]+ [M~~~ ~, M~~ ~~~]+M~ ~~, ~~~+M~~ ~~~,~+M][/ [ [[ 0, which
we shall elaborate in a future publication when we quantize the system [15].

From the invariance of the action of J fields, Eq. (I), under the V, V transformations a conserved current equation can
be derived, i.e., B,,j=0, where j(y,z)=2af' ~izdz JByJ '. Indeed this is also true in the canonical formulation, i.e.,
8„,j= [H&j jo =0. We then derive a set of Kac-Moody-like algebras,

[j~(y, z),j~~(y', z')jo =2alP/ [f/''(y —y'+nL)b(z —z')+
n

which can be easily shown to satisfy the Jacobi identity.
The current j(y,z) generates the left symmetry V(y, z)
by the relations [f'i&iqdy fdztr[v(y, z)j(y,z)], J(x')jo
=t (y', z') J(x'), where V(y', z') = I +v(y', z').

Similarly, other sets of quadratic algebras and their re-
lated Kac-Moody-like algebra of currents can be derived.
Choosing y as time, and y as a space coordinate with
periodic boundary condition, we obtain Eqs. (5) to (7)
with the changes J J ', y y, and z z. Choosing z
as time and z periodic, we obtain Eqs. (5) to (7), with the
changes y z and y z. Choosing z as time and z
periodic, we obtain Eqs. (5) to (7) except with the
changes J J ', y z, and y z. So, there are a total
of four sets of algebras.

It is most interesting to note that the quadratic alge-
bras Eq. (5) and the Kac-Moody algebras Eq. (7) of the
SDYM system are the same in form as those of the
WZNW model derived in Ref. [12] with the addition of
two dimensions, which are ultralocal. This may give a
hint that it is easier to go to higher-dimensional theories
via the algebraic way. On the other hand, the two
theories are very different in the following ways. (I) The
Hamiltonian H~ of the SDYM system is interactive, in

P( (((j~~ —j~)gb(y y'+n—L)b(z —z'), (7)

Note that these Virasoro-like algebras have no central
charge. The Virasoro field U(y, z) generates a nonlocal
transformation on the field J,

contrast to the Hamiltonian of the WZNW model, which
is free. (2) The J fields cannot be factored into multipli-
cation of "chiral" factors, i.e. , JAX(y, z)R(y, z), as in

the WZNW model. (3) There are four distinct sets of
algebras in the SDYM system, as compared to two in the
WZNW model.

Virasoro like algebr-as and hierarchies of nonlinear
and linear systems. —Using the Sugawara construction
[18],we can derive the Virasoro-like fields

U(y, z) —= —(I/4aL)tr[j(y, z)]
2

= —(a/L)tr „dz J8;.J
that satisfy the Virasoro-like algebras

[U(y, z), U(y', z')jo = [2U(y, z)b'(y —y')

+ [|I;,U(y, z )]b(y —y') jb(z —z') .

[U(y, z), J(y', x')jo = —L ' dz J 8;,J ' J(y', x')b(y —y')b(z —z') .

Therefore the fields U(y, z) here have rather indirect relations with the conformal transformations. We do not expect
these algebras to be as powerful as the Virasoro algebras in the WZNW model. The more important algebras are the
quadratic algebras.

In the following, we derive hierarchies of nonlinear and linear systems of SDYM equations. It is known that an
infinite number of involutive conservation quantities 1„[U]can be constructed from the Virasoro-like field U(y, z). The
following bracket is important to consider, [j(y,z),U(y', z')jo =8;,(J(y, z)b'(y —y')b(z —z')). The involutive conserva-
tion quantities take the following simple forms:

„[U]=n ' dydz[U(y, z)]", n =1,2, . . . ; [1„[U],l„,[U] j=o0.
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Now we can introduce new time variables t„ through the
following equations:

where n = 1,2, . . . . These nonlinear equations form a
hierarchy of nonlinear equations of the SDYM system.
We will identify one of the times t] with y. It is easy to
write down the linear system,

V, tlr=(8, +jU" )ttt(y, z, t~, t3 . . . ) 0 (10)
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