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Electroweak Bubbles: Nucleation and Growth
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In the standard electroweak theory, if the Higgs boson mass is comparable with the weak scale, the
electroweak transition is weakly first order, and proceeds via bubble nucleation. It is shown that the
Universe supercools beyond the point where phase equilibrium is possible. When true-vacuum bubbles
nucleate, they expand at velocities of the order of the speed of light until they fill the Universe. These
considerations are important for the recently proposed electroweak baryogenesis mechanisms.

PACS numbers: 98.80.Cq, 11.15.Ex, 12.15.Cc, 12.15.Ji

One of the most striking consequences of the Higgs
mechanism in the standard electroweak theory is the
symmetry-breaking phase transition which would have
occurred in the very early Universe. Recently, there has
been considerable interest in the idea that the matter-
antimatter asymmetry apparent in today's Universe could
have been generated at this electroweak transition. The
proposed mechanisms make use of the remarkable anom-
alous baryon-number-violating processes in the standard
model, which occur rapidly at high temperatures [1].

In simple extensions of the standard model, involving
more than one fundamental Higgs doublet, these bar-
yon-number-violating processes may be "biased" at the
electroweak phase transition, during the very brief period
when the Higgs fields move from the "false" unbroken-
symmetry vacuum to the "true" symmetry-breaking vac-
uum, naturally producing a baryon asymmetry [2,3] (see
[4,5] for earlier speculations on these lines, and [6,7] for
alternate scenarios). The biasing occurs through a chain
of connected events. CP-violating terms in the Higgs po-
tential drive an axionlike C-odd scalar field as the Higgs
fields roll from the false to the true vacuum. The C-odd
field in turn couples to the gauge fields in the effective ac-
tion for the theory [2,3], producing a "force" driving the
Chem-Simons number positive. Finally, this produces a
baryon excess through the axial anomaly. This scheme
was elaborated in [8], where it was argued that it natu-
rally produces an asymmetry of the observed order of
magnitude. However, the estimate presented there was
certainly crude, and there is still some debate over it [9].

The aim of the present Letter is to improve on previous
treatments of bubble nucleation, such as that presented in

[8], and make a first step towards understanding the pro-
cess of bubble growth. A more complete discussion will
be presented elsewhere [10]. My main conclusion is that
the transition proceeds via bubble nucleation with the
bubbles expanding to fill space at close to the speed of
light. This result conflicts with the widespread belief that
the bubble walls move very slowly in weakly first-order
phase transitions [7,11]. The main point is not to over-
count the effect of particle collisions with the bubble wall,
which are already taken into account in the finite-
temperature effective potential. " As I show below, if the
fluid in which the wall is immersed is in local thermal
equilibrium, and the temperature is constant across the

wall, the force on the wall does not increase with its ve-

locity. It is only departures from equilibrium which slow
the wall.

Electroweak baryogenesis is only possible if the Higgs
boson mass is low, at least in the calculable, weak-
coupling regime [4,12,13]. The heavier the Higgs boson,
the weaker the phase transition, and the less suppressed
baryon violation is after it, so that the baryon asymmetry
produced during the transition may be subsequently
erased. In the two-Higgs-doublet theory, this confines
one to the mass range mH (120 GeV for the lightest ob-
servable Higgs boson [13], not far above the current ex-
perimental lower bound of 50 GeV.

I will focus on the one-Higgs-doublet theory for simpli-
city, and where numerical values are involved will assume
(unless stated otherwise) that mH =50 GeV and the top
mass mf =100 GeV, both for definiteness. In the two-
Higgs-doublet theory we are really interested in for
baryogenesis, the phase transition is qualitatively and
quantitatively very similar to the mH =50 GeV minimal
model I discuss here [13].

For Higgs boson masses of this order, the electroweak
transition is weakly first order [14]. A reasonable ap-
proximation to the free energy near the transition is (see,
e.g. , [131)

z'T4
F(y, T) = —JV,p ++(T —T )y —STD +—

y90 2 4

where JV', 1i
= 106.75 is the number of relativistic

[m(T)/T«11 degrees of freedom at this temperature,

11 =%2(@t@)'i with @ the standard Higgs doublet,
y= —,

' (2mn+mz+2m, ')/pp, 8=(2mtt +mz)/4zpp, with

pp =250 GeV the Higgs vacuum expectation value at zero
temperature (pp = Jp/A, in the usual notation), and

T, =Up/A, is the tempera. ture at which the &=0 con-
figuration becomes unstable, equal to 100 GeV for
mH =50 GeV. This form for F(p, T) arises in the high-
temperature expansion, i.e., for all masses m/T((1, for
weak but not too weak quartic coupling, formally
g «A, «g, by straightforward application of the stan-
dard results [15]. The negative, nonanalytic cubic term
which makes the transition first order has an analog in

the theory of the superconducting transition, where in the
type-I regime (analogous to mH (mn ), the transition is
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FIG. 1. The finite-temperature free energy F(p, T) at several
values of the dimensionless temperature g=g(l —T,'/T')
around the electroweak phase transition.

FIG. 2. The pressure-energy diagram for the electroweak
theory. U denotes the unbroken phase (&=0), B the broken
phase (&NO), and M the mixed phase. Densities and pressures
are given in units of the energy density of the U phase, p, , at
T=T; ((=0). Below this temperature the U phase is unstable.
The latent heat of the transition is given by the length of the M
line, I = 4egp, for g)) 1. For clarity, the situation for
=10,@=50 is shown. The realistic case has a smaller value
of e and the 8-phase line is correspondingly closer to the U line.

also thought to be weakly first order [16].
It is convenient to define a dimensionless "tempera-

ture" ( g(l —T, /T ), with . I=ET/8 »1 (@=50 for

mH =50 GeV, m, =100 GeV). The form of the free en-

ergy at various values of g is shown in Fig. 1. Starting at
high temperature, (»1, there is a unique minimum of
F(p, T) at )=0, corresponding to the unbroken-sym-

metry phase (U). At (=2.25 a second higher F
minimum appears at nonzero tt. At (=2 the minima are
degenerate, and as ( falls below 2, the &~0 minimum

corresponding to the broken-symmetry phase (B) be-

comes favored. Finally, on cooling below (=0, the &=0
minimum disappears. Had nucleation of the B phase not

yet occurred, the phase transition would proceed by "spi-
nodal decomposition,

" i.e., through p rolling down to the

8-phase minimum.
Minimizing F(p, T) with respect to p and using the

standard thermodynamic relations, one finds that the

pressure P= —F and energy density p=F —TdF/dT of
the two phases are given by

unbroken-symmetry phase U. As it cools, p and P de-
crease until the temperature T„„(corresponding to /=2)
is reached, where both phases have the same pressure. In

true thermal equilibrium the system ~ould then enter a
mixed phase, with the fraction of the Universe f remain-

ing in the U phase determined from the total energy den-

sity through the relation p=pp r f+pa, r,„(1 f)
When the density reaches p~ T, the Universe is in the
pure 8 phase.

There is, however, a large free-energy barrier suppress-

ing the nucleation of 8-phase bubbles in the U phase, so
the Universe supercools. If nucleation occurs when the

energy density is greater than p~ T, then the 8-phase
bubbles will grow only until the Universe reaches the ap-
propriate mixed phase fraction. But if the density drops
below pa T before nucleation, bubbles will grow until

they fill space. For small e and large g this corresponds
to fallin below 2(1 —eg-') = 1.9 in the case of interest.

pti=JV„. s'rr'T/ 3,Ops =pp[l+e(A —B)],
P~ = —, pp, Ps = —, pp(l + EA ), (2)

g
where 3 = —,

' (((—3) —3((—4 )( ~ + J9/4 —g) and B As we shall see, bubble nucleation is suppressed until j
=2(g —g)( —", + —', d9/4 —

g
——,

' g). The parameter e falls below = 1.6.
=6 lk (rr jV,&/30) ' is very small, e= 1.5&10 for The bubble nucleation rate may be calculated using the

m& =50 GeV, showing that the Higgs field makes a tiny standard formalism described, for example, in Refs.
contribution to the energy and pressure of the Universe in [11,17]. Bubbles nucleate at a rate given by
the regime of interest. These equations yield the pres- 1- M4(~ /zT)3j2e3 E (3)
sure-energy diagram shown in Fig. 2.

At high temperatures, the Universe begins in the where M =y(T —T, ) and S3 is the O(3)-invariant
bubble action, calculated by minimizing the functional

2

Sq =4m r dr — +F(P, T) —F(0,T)1 dp
2 dr

r 7

g3=4zTR dR — ~ '+ [4 (f +g —3) +f(j;—2) —
4 (j—2) +j—2]

2 dR
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where f=p(X/6T) —I and R =(8/'t. ) Tr are dimension-
less. The critical bubble action is a stationary point of
(4), with boundary conditions dp/dr(0) =0, lIl(oo) =0. It
is simple to solve the differential equation for f(r) using a
"shooting" method, adjusting the magnitude of f at the
origin until f asymptotes to —

1 at large radius. The re-
sult depends only on g and the dimensionless quantity
a=A/b , I.find that over the most important interval,
1.3 & (& 1.8, the results are very well approximated by
S3/T=C(2 —() ', where for Higgs boson mass

mH =50 GeV, a =0.13 and C =30. For comparison, with

mH =60 GeV, a =0.4, the results fit the same form with

C=16.5. Neither the "thin-wall" nor the "thick-wall"
approximation presented in [11] is good in the regime of
interest —the bubble wall is thick but all three terms in

(1) are important. As a check, I used a variational an-

satz p =p(0) exp( —R /L ) and stationarized to find

p(0) and L analytically. This gives results in good agree-
ment for (& 1.6, but breaks down at (=1.68. At larger

( the solution approaches thin-wall behavior, looking
more like a step function than a Gaussian.

If the B-phase bubbles grow at a speed v, then the frac-
tion of the Universe remaining in the U phase at a time t
is given by

fu =exp , 4zdt' v'(t —t')'I (t')Jo 3
(5)

with t the cosmic time. To a good approximation the
time dependence of the prefactor in I may be ignored,

I = t, (mpl/T, . ) exp( S3/T) = t,. ex—p(160 —S3/T) .

Now change variables to g=g(1 —T, /T ) =g(l .t/t„)—
and expand S3/T about the point where it equals 160,
S3/T(g') = 160+D(('—go), with go

——1.65 and D
=160a/(2 —(o) = 730. The phase transition occurs close
to this point. The g' integral is dominated by a saddle
point, and the exponent in (5) grows to unity at a value of
g= $0+D 'ln[v /(Dg) ] = 1.6. At the saddle point,
(' —g= 3/D, corresponding to the ratio of the bubble ra-
dius to the horizon v(t —t')/2t =3v/2Dg=4x10 v.

So when the bubbles collide and fill space, they are very
much smaller than the horizon, but very much larger
than the correlation length mH (T) ' = 10T
= 10 ' t. During the growth of these bubbles, the tem-
perature of the Universe decreases by = 4 x 10, a
negligible eA'ect.

We are now ready to discuss how fast the bubbles grow
after they nucleate. The standard formalism for shocks
[18] employs energy and momentum conservation across
the front, treating the matter as a fluid in equilibrium on
either side. However, this gives only two equations, for
three unknowns —the wall velocity, and the temperature
and velocity of the fluid behind it. The extra equation
which is needed is the equation of motion of the Higgs
field lt. The terms in this equation involving fields getting
their mass from ill may be averaged in the appropriate

dm'(x) t' d'k 1 1

~collisions
&

X
d g ( ) 3 2 p

d ' d'k=T dm2 ln (1 —e ')
dm " (2z)

m T=F(m, T) —F(O, T) =
24

m T +O(m')
12m

(6)

for bosons, and similarly for fermions. These are precise-
ly the temperature- and p-dependent terms in (1).

This collisional pressure on the wall changes if the wall
is moving through the fluid. If the mean free time r be-
tween particle collisions is considerably shorter than the
time taken for the wall to pass a given point, given by
I/y, v with I =mH '(T) = 10T, then the fluid will to a
good approximation be in local thermal equilibrium. This
condition is certainly fulfilled if the wall velocity relative
to the fluid v is substantially less than the speed of light,
and even for mildly relativistic velocities —the Universe is
at this epoch filled with a very dense quark-gluon plasma.
If there is local thermal equilibrium in the cosmic rest
frame, then in the rest frame of the bubble wall at each
point x the phase-space density is given by the Lorentz
boosted form of that in (6), n/, = (exp[yp(x) [tot,
—v(x)k, .]l —1) ', with m(x), p(x), and v(x) the local
particle mass, inverse temperature, and velocity of the
fluid (note that the phase-space density is a scalar under
Lorentz transformations). Changing variables to k,'
=y, .[k, —v(x)cot, ] one finds that the velocity dependence
completely disappears. While the apparent number den-
sity of particles in the rest frame of the wall rises (due to
Lorentz contraction), they have higher energy, and the
wall is more transparent to them. These opposing effects
exactly cancel.

thermal state.
Particle collisions are precisely the origin of the

temperature-dependent terms in (I), and the correspond-
ing terms in the equation of motion for p. Consider one
of the particle species that receives its mass m(p) from p.
If the wall is at rest, the particle mass is a function of
space, m =m(x), varying smoothly from 0 to m across
the wall. During a collision with the wall, energy and
momentum parallel to the wall are conserved, but
momentum perpendicular to the wall, k„, is not. A parti-
cle incident from the U phase is reflected if k, & m, and
transmitted with a lower momentum if k„&m. One in-

cident from the B phase suAers an acceleration towards
the U phase. In each case the wall receives an impulse
back towards the B phase. We may calculate the force
exerted by the particle on the wall from energy conserva-
tion. In the rest frame of the wall, k„(x)+m(x)
=const. It follows that F, = dk„/—dt = [dm (x)/dx]v, /
2k„= [dm (x)/dx]/2tot, , with tot, =(k +m ) 't . Adding

up the eA'ect of all the particles on the wall, the total
pressure is given by
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The result for the collisional pressure is then given by

2 2 3

12m

with T2=[fdm T (m)]/m, T=[fdm T(m)]/m be-
ing "mass weighted" averages of the powers of tempera-
ture across the wall. The only way to slow the wall while
remaining in local thermal equilibrium is to raise the
"average" temperature across it to the phase equilibrium
value. However, as noted above, the latent heat of the
transition is tiny, so the temperature variation across the
wall is small. In this situation, the wall is accelerated up
to a speed close to the speed of light.

The assumption of local thermal equilibrium breaks
down if the wall moves fast enough that I/y, , v «r. One
can make the opposite assumption, that there is no
thermalization in the vicinity of the wall, and use the
thermal distribution functions appropriate to the medium
on either side. In this case, one finds a collisional pres-
sure which rises linearly with the velocity of the wall [10].
Equating this with the excess pressure of the true-vacuum
phase, one determines a mildly relativistic terminal veloc-

ity i =0.1. Departure from equilibrium does produce a
mechanism for slowing the wall, but the actual velocity is

likely to be considerably larger than 0. 1 since in the real-
istic case r is certainly much less than 101=100T '. It
is intriguing that the final wall velocity depends so strong-

ly on the microscopic details of the thermalization process
[10].

The analysis given here is certainly incomplete, but will

I hope serve to stimulate more detailed study. My main

conclusion, that bubble walls in weakly first-order transi-
tions propagate at velocities of the order of the speed of
light, is new, but an accurate determination of the veloci-

ty clearly requires more work. In [10], a detailed deriva-
tion of the velocity dependence of the collisional pressure
acting on the wall is given, starting from the Higgs field

equation of motion. This requires an analysis of the
Boltzmann equation in order to determine the departure
from local equilibrium in the particle phase-space density
across the bubble wall.
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