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Suppression of the Rayleigh-Taylor Instability by Convection in Ablatively
Accelerated Laser Targets
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An analytical model based on the WKB approximation is developed to describe the suppression of the
short-wavelength Rayleigh-Taylor instability by convective How. The boundary-value problem for the
instability growth rate is reduced to the solution of a system of algebraic equations with the coefficients
depending upon the unperturbed variables. The method, which is applicable for perturbation with wave-

lengths small compared with the density scale length, is applied to analyze the instability in stationary,
ablating plasmas with convection and strong inhomogeneity.

PACS numbers: 52.35.Py, 52.40.Nk

The Rayleigh-Taylor (RT) instability is the principal
physical process inhibiting the achievement of sufficiently
high compression of the fuel in inertial fusion. Recent
experimental [1-4] and numerical results [1,5-8] indi-
cate that over a wide range of conditions the growth of
the RT instability is suppressed substantially by convec-
tive flow across the ablation region. The growth rate a
can be described by the so-called Takabe formula [6,7]:

o =0.9(gk) 't —3kv,

where k is the transverse wave number, v is the flow ve-

locity across the ablation front, and g is the acceleration.
To gain further insight into the underlying physical

process of the ablation stabilization, analytical solutions
are of special importance. Such solutions might provide
approximate scaling laws or solutions over a very large
parameter space. Numerous attempts have been made to
develop an analytical theory of the stabilizing effect of
convection. For example, approximation of the problem
by the discontinuity model has been made. This ap-
proach leaves the solution undetermined because it is

necessary to introduce an unknown additional boundary
condition to close the system of linearized equations for
small perturbations [9-13].

For simplicity, let us consider here an incompressible
model for the subsonic velocity of the ablation flow. We
work in a frame of reference that moves with the center
of mass of the plasma slab, which is accelerated by the
ablation pressure.

It should be noted that the principal characteristic of
this problem is the difficulty of approximating the prob-
lem with the discontinuity model. Indeed, an additional
boundary condition for the unperturbed flow is needed for
the discontinuity to be able to evolve [14]. But this con-
«)Ition specifies just the stationary-state discontinuity in

terms of known variables. Therefore, the additional
boundary condition, which is needed to pose the linear-
ized problem, does not follow from a variation of an un-

perturbed additional condition. Moreover, we are not
sure that it is possible to obtain this additional condition

by aI&y regular method. On the other hand, the property

of evolution of a discontinuity is enough of a condition for
the existence of a unique structure of the discontinuity
[14]. It has been shown [8] that all the necessary infor-
mation can be obtained from explicit consideration of the
structure of the ablation region. That structure can be
defined either by a one-dimensional numerical simulation
or from an analytical self-similar solution. In this way
the solution of the spectral problem can be obtained, at
least numerically. Using this approach we do not have
the extra variable that defines the position of the per-
turbed discontinuity surface. Therefore, no additional in-
formation is required in this approach.

It follows from a simple estimate and from numerical
results [7,8] that suppression of the RT instability is sub-
stantial compared to the classical value for a perturbation
wavelength A, =k '=v/(g/L)'l =0.5 pm. The pertur-
bation wavelength is small compared to the density scale
length L =5-10 pm in the unperturbed flow. Therefore,
the "potential energy" is a slowly varying function of po-
sition, and the WKB approximation (in Russian books it
is called the quasiclassical approximation) can be used
with a high degree of accuracy [15].

Let us consider the stationary state of the unperturbed
flow that is created during the irradiation of the target by
the laser light. Typical profiles of the hydrodynamical
variables in the laser plasma are given in Figs. 1-3 of
Ref. [8] for different regimes of plasma irradiation and
acceleration. The ablation region for these regimes is lo-
calized between the surface of peak density (z =zo) and
the surface ~here acceleration of the plasma particles
vanishes (z =z, ). The acceleration and the density gra-
dient are in the opposite direction; therefore, the condi-
tion necessary for RT instability occurs here.

The stability analysis proceeds by linearizing the set of
unperturbed equations. For planar motion only two spa-
tial directions need to be employed, and perturbations of
the form +(t,x,z) =tl( )etxzp(ot+ikx) may be assumed.
We assume the direction of the z axis to be along the
gradients of the unperturbed flow. Furthermore, only
growth rates o. that are large compared with the evolution
of the unperturbed flow are considered. Assuming that
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the perturbations are adiabatic and the subsonic unper-

turbed flow is incompressible, we can write the linearized

hydrodynamic equations for mass, momentum, and ener-

gy transport in the following. forms:

energy in the potential field U(z) =k [I —ga(z)/o ].
The eigenvalue a„ for large values, n)&kL, can be ob-
tained using the Bohr-Sommerfeld quantization rule [15]:

op+ (pi +pF. )+-ikpF, =0,
dz

d
p Qvx+v v = lkP,

dz

(2)

(3)

Z2 I

k (ga/cr„—1)dz =z(n+ Y ),
4 "I

(7)

where n =1,2, 3,. . . , and z ~,z2 are the quasiclassical turn-
ing points. In particular, for p(z) a:exp( —aoz) and g
=go =const,

dv
p gp. + vv +pv = — P+pg,

dz
'

dz dz
(4) go+0

I + [n(n+ 1/2)] /(kL)

F.+ikF, =0, (5)

where p(z), P(z), v(z), and g(z) are profiles of the un-

perturbed flow, and small perturbations from these pro-
files are labeled with an overbar.

The assumption of adiabaticity and incompressibility
means that the following inequalities hold [12,13]:

X/L»(l, /LM)'" (&~10 'um),

v «cT, k ' «max jcT/g, LcT/v ], o «kcT,

where I, is the mean electron free path, M(&1 is the
Mach number, cT is the isothermal sound velocity, and A,

is the wavelength of the instability.
The growth rate of the instability is an eigenvalue of

the boundary-value problem for the system of Eqs.
(2)-(5) with the appropriate boundary conditions, which

are characterized by a concrete physical problem.
We assume the following background structure of the

hydrodynamic profiles. Let density, velocity, and temper-
ature be constant outside the ablation region, i.e., down-

stream and upstream, and equal to the corresponding
values at z =z, and zo, respectively. The boundary con-
ditions for Eqs. (2)-(5) are rapid evanescence of the per-
turbation modes away from the unstable region. Note
that the eigenfunctions are localized around the unstable
region in the WKB approximation; therefore, the solution
is slightly dependent on the choice of the concrete model
of the downstream and upstream flows.

To illustrate the WKB method let us consider first the
growth of the RT instability for the plasma at rest. Then

Eqs. (2)-(5) may be combined to obtain the known equa-
tion for F, [16]:

d '-d
2 ga(z)

F. —a(z) i, —k I — F, =O,
z~ dz

where a(z) = —dlnp/dz is the steepness of the density
profile.

For perturbations with wavelength A, that is small com-
pared to the scale length of the unperturbed flow,

L( (za)~ ', we can omit the second term in Eq. (6).
Without this term, Eq. (6) is analogous to Schrodinger's
equation for the motion of a point mass particle with zero

which for n »kL coincides with the exact solution [8,16].
Note that although the exponential profile for the plas-

ma at rest has been solved analytically [16], using the
WKB approach we obtain the eigenvalue spectrum for an
arbitrary density profile in the explicit analytical form.

Let us now consider the suppression of the short-
wavelength RT instability by plasma convection across
the ablative region. For the WKB approximation the
eigenfunctions of Eqs. (2)-(5) may be written in the
form

+z
+(z) =+A, exp k„w, (z')dz'

J
(8)

=0 (9)

where we have used dimensionless variables, growth rate
Z(z) =o/vk, and acceleration

G(z) =4ga(z)/(vk) =4a /k Fr,

with Fr=v a/g the Froude number. The term p~ dv/dz
in Eq. (4), small compared to pg, is neglected.

For subsonic liow the second term in Eq. (9) is small,
since M « I, and can be omitted. The location of the
roots wj. of Eq. (9) in the complex plane p depends on the
profile coordinate z. At infinity, where the flows are as-
sumed to be uniform, the roots pj. correspond to sonic, en-
tropy, and vorticity modes [8,12]:

v )(z -t ~) =1, vz(z w ~) = —1,

v34(z —w~) = —Z.

Not more than two roots can be simultaneously located in
the half plane Re(y) & 0. At certain values of z the roots
can intersect and form multiple ones. We expect pertur-
bations, which are localized in the ablative region, to have

~here +=~„~,p, P. Equations (2)-(5) together with

Eq. (8) yield a homogeneous algebraic system in the am-
plitudes Ai. The phase functions pj(z) are the roots of
the fourth-order characteristic equation obtained by set-
ting the determinant of this system equal to zero:

X(v)-=(~+~)'(v'- I) -(~+v) g v+ —G
gM dlnv I

v2k2 dz 4
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the following asymptotic behavior at infinity:

+ (z) =A exp(kzp ~ ) for z

4

e(z) = g W, exp(kzv, ) for z —+~.
J=2

(io)

R(y) =0 and d%(o)/dp=0. (i 2)

Denoting the real solution of Eqs. (12) by p+ and 2+, and
s =(1+G/27) /, we have

&e =(1 —2v~2)/v ~,
G / i/2

(s+1)' '+(s —1)' '+ —'G '/' (i4)

Such asymptotic behavior is possible if points along the
unperturbed profile exist where intersection of the roots
of Eq. (9) occurs in the half plane Re(p) & 0. Thus, the
condition that perturbations are localized in the unstable
region can be written as

ko= [max( —4gv d lnp/dz)] '/ . (i9)

where a+ is the root of Eq. (9) which shifts along the
axis to im(p) =0 at the half plane Re(p) &0 when

z & z, while p —is the root which tends to the point p =1
when z &z+. Depending on the eigenvalue n., the root

p+ represents either the vorticity or the sonic mode in the
downstream region. An analysis has revealed that the
former case is realized if the condition a & kv(+~) is

valid, while the latter is realized in the opposite limit.
The function Z+(G(z)) reaches its maximum value at

the point where G =G
„. „[—4g(vk) 'd lnp/dz]. This

means that Z+(G(z)) is negative if G „. „&1, and the
growth rate vanishes if G,. „=1. From this condition we

can find the value of the wave number ko for which the
growth rate vanishes:

The maximum growth rate o can be obtained from the
system of algebraic equations

Z(z) =Z. (z), „[Z(z)]= [Z.(z)].=d
dz dz

We do not consider the remaining conjugate complex
solutions of Eqs. (12) which could be associated with

complex eigenvalues o. Equations (15) are overdeter-
mined in this case and do not have a solution in a com-
mon case.

Using the explicit form of the functions Z(z) and
Z+(z), we can eliminate a to obtain the equation that
defines the only root intersection point z =z+.

g d 1 1 2Ps
lnp

dz p k dz 2 1+2'
1.0

35

z (p,m)

50

x[12(1—p~) +G] lnv,
d

dz
(i6)

where p+ =++ (G (z) ) is defined by Eq. (14).
Thus, we obtain the solution for the maximum growth

rate,
0.5—

o =kv(z, )Z, (z, ) . (i 7)

Equations (16) and (17) are the required WKB solution
to the problem.

The WKB approach allows us in principal to find the
spectrum a„ if the behavior of the roots of Eq. (9) in the
complex plane p is known.

The eigenfunction that corresponds to the maximum
eigenvalue is

e(z) =exp k„v+(z')dz', z & z, ,

e(z) =exp k„v (z')dz', z & z, ,

0.0
0.0

k 1gm-'}

5.0

FIG. 1. Top: Steady-state smoothed unperturbed profiles of
density p (g/cm ), pressure P (Mbar), flow velocity V (IO"
cm/s), and acceleration g (IO" cm/s') in the ablation plasma

flow for a 10-pm Al planar target exposed to Nd:glass laser ra-
diation (X0=1.05 pm, 1=10" W/cm'). Bottom: The RT
growth rates of instability corresponding to the profiles in the

top figure vs wave number k obtained numerically in Ref. [8]
(dashed line) and from the WKB approach (solid line).
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It is clear that, strictly speaking, we can consider van-

ishing of the growth rate for the stationary state of the
unperturbed motion only. Note that although formula
(19) reveals a scaling for ko quite different from the ap-
proximation of Takabe's formula ( I ), the numerical
values of ko are close in both cases for parameters typical
of ablating plasmas. The discrepancy has to be apprecia-
ble for smoother unperturbed profiles.

Figure 1 demonstrates spectra of the RT growth rates
in an aluminum target of thickness 10 pm exposed to
Nd:glass laser radiation (A,o =1.05 pm, irradiation I
=10 W/cm ). The smoothed unperturbed plasma
profiles are shown at the top in the coordinate system
comoving with the center of mass of the accelerated tar-
get. The dashed line in the bottom panel represents the
disperson curve obtained numerically by the shooting
method as an eigenvalue of the boundary-value problem;
the solid line corresponds to the WKB solutions where the
unperturbed hydrodynamic profiles (the top profiles) are
used as the coefficients in Eqs. (16) and (17). The
difference between the numerical and WKB solutions de-
pends on the applicability of the WKB approach, which
implies that the local Froude number must be small com-
pared to unity. In the numerical unperturbed solutions
shown in the upper figure, Fr =v a/g=0. 25.
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