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We study the possibility of J3x J3 antiferromagnetic order in the 5= —,
' triangular- and Kagome-

lattice Heisenberg models. An Ising-like anisotropy is introduced into the Hamiltonian, which picks a
pair of ground states out of the manifold of the classically ordered states. To study properties of the
Heisenberg model, we develop series expansions around one ordered state. We find that the Kagome-
lattice model is disordered whereas the triangular-lattice model is very close to the critical point for anti-
ferromagnetism; if ordered, the latter has an order parameter much smaller than that predicted by spin-
wave theory.

PACS numbers: 75. lO. Jm

The magnetic properties of two-dimensional frustrated
quantum-spin Hamiltonians have been of considerable in-

terest for a long time. Early work goes back to Anderson
and co-workers [1], who proposed that the ground state
of the spin-half triangular antiferromagnet should have
no long-range order. They proposed a special type of
ground state due to strong quantum fluctuations which
was called a resonating valence bond state. Several nu-

merical studies including exact diagonalizations [2] were

interpreted in favor of this picture. Another notable work
is the proposed mapping by Kalmeyer and Laughlin [3]
between the triangular-lattice Heisenberg model and a
two-dimensional electron gas in a strong magnetic field.
On that basis they suggested a disordered ground state
with an excitation gap. Huse and Elser [4] carried out a
variational wave-function study of the triangular antifer-
romagnet. They found that they could construct wave

functions which had energy substantially lower than that
of Kalmeyer and Laughlin. Within their variational
scheme the ground-state energy was minimized by a wave

function that had a large (about 68% of the classical
value) antiferromagnetic order parameter.

One technique for studying magnetic order in the pres-
ence of quantum fluctuations is the spin-wave or large-5
expansion [5]. Recent numerical studies [6] of the
square-lattice Heisenberg model found that the spin-wave

expansion was quantitatively accurate even for 5= —.'.
For example, the estimated sublattice magnetization and
spin-wave velocity agree with the spin-wave answer trun-
cated at order 1/5 [7]. Such 1/5 expansions have also
been developed [8] for the triangular lattice, and predict
an order parameter about 48% of the classical value.

Another approach that has provided a lot of insight
into the magnetically ordered and disordered phases of
these systems is the large-% expansion of Read and
Sachdev [9]. For the square lattice, they predicted the
existence of Neel and dimer ordered phases. Numerical
evidence for such phases was also obtained by series ex-
pansions [IO] and by exact diagonalization studies [11].
For the triangular and Kagome lattices, where the classi-

cal order is noncollinear, these large-A' expansions predict
a nondimerized quantum disordered ("spin liquid" ) phase
for sufrIciently small S. However, this theory cannot pre-
dict accurately the value of the spin where the transition
from magnetic order to disorder takes place.

The Kagome-lattice anti ferromagnet has generated
tremendous interest lately from both an experimental
[12,13] and a theoretical point of view [14-18]. A simple
way to visualize the Kagome lattice is to regard the tri-
angular lattice as consisting of four sublattices and re-
move the spins on one of the sublattices. As shown, e.g. ,
by Broholm et al. [121, the classical ground state is high-

ly degenerate in this case, with nonzero entropy of the de-

generacy per spin. However, the entropy of classical
zero-point fluctuations gives different relative Boltzmann
weights to the various ground states such that the classi-
cal Heisenberg model on the Kagome lattice apparently
has true long-range antiferromagnetic order in the limit

of vanishing temperature [18]. Thus the question natu-

rally arises as to whether this order survives the strong
quantum fluctuations of the spin-half system. The spin
correlations found in exact ground states of small clusters
suggest that the spin-half system does not have magnetic
order [19], but a more systematic approach to address
this question is clearly called for.

In this Letter we study the spin-half models by series-
expansion methods. We introduce an Ising-type anisotro-

py, which allows us to develop systematic series expan-
sions for the ground-state properties. The series are ex-
trapolated by standard methods. The results of the extra-
polations indicate that the Kagome antiferromagnet is

not antiferromagnetically ordered. Thus this system may
well have a true spin-liquid ground state. For the tri-
angular antiferromagnet, on the other hand, we can only

conclude that it is very close to its critical point. If long-

range ordered, it has an order parameter much smaller
than given by spin-wave theory; if disordered it has a

large correlation length. Given the length of our series
we cannot resolve whether or not it is ordered. However,
we do obtain a significantly improved estimate of the
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Here i j goes from sublattice A to B, B to C, and C to
A. Taking as the unperturbed Hamiltonian

+p 2 Z oirrj ~

—+ j
and writing the full Hamiltonian as

P'= Pp+ J~('P —'imp),

(3)

(4)

ground-state energy.
The spin-half Heisenberg models are defined by the

Hamilton ian

8 =4/ S;.Sj,
&i,j &

where the sum is over all nearest-neighbor pairs of spins.
In order to develop Ising-type expansions around a classi-
cal ground state, which is noncollinear, we need to intro-
duce an anisotropy parameter in the Hamiltonian that
selects a pair of ground states out of the classical ordered
states. For the triangular lattice and for the Kagome lat-
tice, this corresponds to the three-sublattice 120 order
(also called J3 x J3 order). Let us choose a ground state
with the spins on the A sublattice pointing along the z
axis, and the spins on the B and C sublattices rotated
120' either way in the x-z plane from the z axis. We
choose new variables o; =2S; on A, 2R+S; on B, and
2R-S; on C, where the operator R+ is a rotation around
the y axis by ~120'. In these new variables our refer-
ence classical ground state has all the a; pointing along
the z axis (ferromagnetic order). The transformed Ham-
iltonian is

value while all other permitted clusters have it reduced to
In twelfth order we find only 26079 clusters for the

Kagome lattice. This allows us to carry out the expan-
sions for the Kagome lattice to higher order than for the
triangular case [22]. Let us define the order parameter
M and the structure factor S by the relations

M =(op&, 5 =g (&capo;) —(op)(o,-)),

where the brackets denote ground-state expectation
values. The expansion coefficients are presented in Table
I.

W'e first consider the extrapolation of the order-
parameter series assuming long-range order at the
Heisenberg point. In this case, there will be a square-root
singularity at J& =1. If there were no other singularities
in the complex plane within the unit circle, the partial
sum of the first n terms in the series should asymptotical-
ly converge as I/v n, allowing for a systematic estimate of
the sum of the infinite series [6l. However, this is not
true if there are other singularities in the complex plane
with ~J~( ( I. From the Hamiltonian, we expect an ad-
ditional singularity on the negative real axis near J&
= —0.5, where the system may order ferromagnetically
along the y axis. Such a singularity is clearly present,
causing the partial sums to alternate and diverge before
J&=1. To move this singularity away, we use Euler
transforms to change variables from J~ to x =J~/
[a+(l —a)J~l. For very small a the series coefficients
become extremely small, making extrapolations harder.
For a close to unity, the coefficients are hardly changed
from the untransformed series. Good compromises ap-
pear to be a=

2 and a= —,', which map J&= —l and

J& = ——. to infinity, respectively. The resulting plots of
the partial sums are shown in Fig. 1. The Kagome anti-
ferromagnet is clearly extrapolating to a negative value

we can generate power-series expansions in the variable
J&. The Heisenberg antiferromagnet corresponds to
Jg =1.

We generate the expansions by the cluster method
[20,2l1. As in a low-temperature expansion, we define
our clusters as sets of sites. A cluster of N sites only con-
tributes in Nth or higher order. To calculate the contri-
bution of a given cluster, we include all terms in the
Hamiltonian which Hip spins only in the cluster. All clus-
ters which are related to each other by a symmetry of the
lattice can be grouped together; because of the direc-
tionality of the bonds in (2) we cannot group clusters to-
gether by their topology. For the triangular lattice we
find 182510 clusters in eleventh order. For the Kagome
lattice we consider the decomposition of the triangular
lattice into four sublattices and keep only the clusters
which do not fall on all four sublattices. The lattice con-
stants of the clusters for the Kagome lattice can be ob-
tained from the triangular ones. Straight, linear clusters
have their lattice constant reduced to —', of the triangular

rn Ep

Triangular

Ep

Kagome

0 -1.5

1 0

2 -0.675

3 0.135

-0.27

0.108

1.08

-0.432

-0.75 -0.5

0.125 0.1666667 -0.6666667

4 -0.1773482 -0.2726916 1.4341347 -0.08020833 -0.3245833 1.7695833

5 0.0817034 0.1717951 -0.9583433 0.02412326 0.1749051 -1.0925162

6 -0.1133163 -0.3315263 2.0593548 -0.02?19836 -0.2906697 1.9308204

7 0.1261394 0.4110737 -2.7696352 0.06731218 0.4679179 -3.6055475

8 -0.1906393 -0.7382203 5.2916370 -0.1751062 -1.1833128 8.9988224

9 0.2740349

10 -0.4101784

1.1781303 -8.9566042 0.1891826 1.5674260 -12.9259803

-2.0109889 16.0740098 -0.241928? -2.5738747 21.7897165

11 0.6262086 3.4012839 -28.4769501 0.3815669 4.3229068 -39.2884503

12 -0.6701061 -8.0770009 76.5639246
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TABLE I. Expansion coeScients for the ground-state energy
Eo, the order parameter M, and the structure factor S.
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TABLE II. INIMI Pade estimate for the zero of (Mt) for
the triangular lattice. A value of I corresponds to the Heisen-
berg model.

M/N 2

~ ~
g ~~ ~

I t I t I t I

0 0.2 0.4 0.6 0.8 1

I ~ 385 1.205
1.004 0.955
0.960 0.827
0.923 0.954
1.125 1.005
0.875 1.005
1.191 1.016
0.863 1.037
1.337

1.062
0.910
0.949
0.974
1.005
1.005
0.997

1.019
1.015
1.001
0.998
1.020
0.999

1.01 5 1.003
1.019 1.001
0.997 1.008
1.000 1.01 2

0.978

1.002
1.003
1.014

1/v'n
FIG. I. Partial sums for the order-parameter series. The

five- and six-point stars are for the triangular lattice with Euler
transform parameters a =

2 and a = 3, respectively. The
squares and the circles are for the Kagome lattice with a =

2

and a = —,', respectively.

suggesting that it is disordered, while the triangular-
lattice model appears to extrapolate to a value of about
20% of the classical moment. This should be compared
with the spin-wave estimate of 48%.

Since the order-parameter estimate for the triangular
lattice is so small, the analysis assuming long-range order
cannot be fully relied upon. Unfortunately, unbiased
analysis shows poor convergence. Hence we look for con-
sistency with different scenarios. If the system disorders
before reaching the Heisenberg point, we expect the criti-
cal point to be in the classical 3D Ising universality class.
On the other hand, if it disorders right at the Heisenberg
point we expect it to have the universality of the classical
Heisenberg antiferromagnet on the stacked triangular
lattice [23]. In the first case we expect to see the magne-
tization vanish at the critical point with the exponent

PI = —, , while in the latter case it should be PHI =PH/Pl,
where PH is the exponent for the stacked triangular
Heisenberg model for disordering with temperature, and

is the crossover exponent for Ising anisotropy.
Kawamura quotes [23] PH =0.3, Pl & y= 1.1. Alterna-
tive scenarios for the stacked triangular lattice give simi-
lar estimates [24]. Thus pHI is not far from —', . To inves-

tigate these different possibilities we raise the magnetiza-
tion series to different powers, such that the resulting
series may have a simple zero. We then use Pade extrap-
olations to estimate the location of the zero. These esti-
mates of the zeros of M are shown in Table II. The
closeness of the estimates to Table I shows just how near
the Heisenberg system is to the critical point. For the Ka-
gome lattice we find that all high order (iV+M ) g),
near diagonal (iN —Mi & 6) estimates of the zero are in

the range 0.83-0.94, showing that it disorders well before
the Heisenberg point.

We also studied the order-parameter series by biased

E( = —2.21+ 0.01. (6)

This can be compared with the results from exact diago-

differential approximants. We constructed d-log Pade
approximants for the series which were biased to have a
power-law singularity at J&=1. The approximants can
then be used to estimate the exponent and the value of
the function at that point. For the triangular lattice, we
found that those approximants which gave exponent esti-
mates around & gave an order-parameter estimate
around 20%, as in our previous analysis. However, an
equal number of approximants gave exponent estimates
in the range 0.3 to 0.4. These had values very close to
zero. For the Kagome lattice these biased approximants
did not give sensible results, as might be expected if the
singularity really occurs well before J& =1.

As long as the triangular system does not disorder
much before J& =1, the ground-state energy per spin E,
for the Heisenberg model can be estimated from the
series. Since the singularity in the ground-state energy is
weak (a —", power in spin-wave theory), a reasonable esti-
mate can be obtained by direct Pade approximants.
Different approximants showed excellent agreement with
each other for the triangular lattice. From these we
would estimate E, = —2.204+ 0.005, where the uncer-
tainties reflect the spread in the Pade estimates. Howev-
er, we expect a systematic error in this estimate. If the
Heisenberg model is disordered, there is a singularity at
J& & 1, and we cannot reliably predict this systematic er-
ror. However, if the singularity is at the Heisenberg
point (which will occur for long-range ordered and criti-
cal cases), we can also estimate the energies by biased
differential approximants. We find that a number of ap-
proximants show a very weak singularity (exponent ) 3),
and they have energy estimates in the range quoted ear-
lier. However, a few approximants which give exponent
values close to & suggest an energy estimate slightly
lower. If the Heisenberg model is critical, we expect the
exponent to be larger than —', . Thus our best overall esti-
mate for the ground-state energy of the triangular-lattice
Heisenberg model is
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nalizations [2] of E, = —2.20~0.04. On the other hand,
the extrapolations for the Kagome-lattice energy series
are ill-behaved as expected. A similar extrapolation was
done for the structure factor to ascertain its location and
power of divergence. The convergence was not as good,
but the results were consistent with earlier conclusions.

To summarize, in this Letter we have developed sys-
tematic Ising-type expansions for the S=

& Kagome-
and triangular-lattice antiferromagnets. W'e find that the
Kagome-lattice Heisenberg model is magnetically disor-
dered, while the triangular-lattice Heisenberg model is
very close to its critical point: If ordered it has an order
parameter much smaller than predicted by spin-wave
theory; if disordered it has a large correlation length.
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pen Center for Physics for hospitality, and the NSF
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