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Low-Temperature Properties of Two-Dimensional Frustrated Quantum Antiferromagnets

P. Azaria
Laboratoire de Physique Theorique des Liquides, Uni I ersite Pierre et Marie Curie,

4 Place Jussieu, 75230 Paris CEDEX 05, France

B. Delamotte and D. Mouhanna

Laboratoire de Physique Theorique et Hautes Energies, Universite Paris 7, 2 Place Jussieu, 75251 Paris CEDEX 05, France
(Received 30 July l 991)

Though much of the recent work on 2D quantum canted antiferromagnets has been devoted to the

study of disordered states, there is evidence that some of these systems have Neel ground states, even for
spin —,'. Following Chakravarty, Halperin, and Nelson, we study the quantum nonlinear sigma model

2IrB/k~ T
suited to these systems and obtain for the correlation length (=CILIA/(kaT) '~-]e, where A and 8
depend on the spin stiA'nesses and spin-wave velocities renormalized by quantum fluctuations. We dis-

cuss experiments on 'He adsorbed on Grafoil.
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Since at the classical level the effect of frustration is to
reduce the order, frustrated quantum spin systems are ex-
pected to exhibit nonconventional disordered ground
states [I]. Such an effect would be of importance for
some theories of high-T, . superconductivity [2,3]. For
this reason, quantum frustrated spin models have recently
been the object of intensive numerical as well as analyti-
cal work [4-8]. Though most of the theoretical interest
has been devoted to the study of states not having long-

range order, it is likely that some frustrated models may
exhibit long-range order in their ground states [6-8],
even for spin —'. To our knowledge, there have been no

studies of the low-temperature properties of frustrated
quantum antiferromagnets assuming a noncollinear or-
dered ground state (which will be referred to as a Neel
state in the following). In particular, the expression for
the correlation length for these systems is still lacking.
Such an expression would be of interest in discussing ex-

periments on doped La2Cu04 [9,10] and on He [11] ad-

sorbed on a graphite substrate. In this work, we extend
the analysis of Chakravarty, Halperin, and Nelson

(CHN) [12,13] to quantum canted Heisenberg models

with zero net magnetization. We study the quantum non-

linear sigma (QNLcr) model suited to these systems and

give the general expression of their correlation length.
Years ago, Halperin and Saslow [14) showed that the

long-distance physics of frustrated quantum Heisenberg
models may be described by a hydrodynamical theory,
provided the total magnetization is zero. They predicted
the existence of three spin-wave excitations resulting
from the complete breaking of the O(3) spin-rotation

group. The linear spectrum and the interactions of these
spin-wave excitations are described by a QNLa model

whose action is entirely determined by symmetries. This
action was first derived from the lattice by Dombre and

Read [15] in the special case of the D=2 triangular
Heisenberg antiferromagnet (AFT). They wrote it in

terms of a rotation matrix of SO(3) which is the relevant

order parameter for such a model:

S= —! dr „d'x[Tr[PO(g 't)og) -'

+P~(g 't);g) '-]l,

p t

5 —i dr J d x(g„pMoroo+p~bQp; roj~),- 40

where g 'B„g=ru„"T„T,C Lie[SO(3)], and where g„l,
Tr(PoT„TI, ) a—nd p, l,

= Tr(P&T„TI, ) are—the sus-

ceptibility and spin-stiffness tensors. Note that (I) and

(2) are nothing but the continuum limit of the Lagrang-
ian of a system of quantum rigid bodies interacting on the
lattice, where (g ')„g =g'" is the inertia tensor of the

tops and p, I, is the coupling between nearest-neighbor
tops on the lattice. This generalizes the analysis of CHN
to frustrated quantum spin models with zero magnetiza-
tion. In the following we shall restrict ourselves to the

case where g b =g 6,h, pl =@2&g3, and p p
=p 8 I„pl

=p~&p~. The effective action (2) is then O(3) SO(2)/
O(2) symmetric. It describes three interacting spin

waves with velocities c~ =c2=(p~/gi)' and c&=(pd
g~) . It is the action relevant for the AFT and other

(2)

where g(x, r) C SO(3), |I„=(ci,, tl, ) =(a/|I. , a/tlx, ),
=1,2, P is the inverse temperature, and P„=di ga( p~„,

p.„,p~„), p =O, J, are diagonal matrices which are a
priori independent. It is important to notice that action
(I) is not particular to the AFT model. In fact, if not for
the anisotropy between space and time directions, action
(I) would be that of a standard NLRB& model with an or-
der parameter in SO(3) [15-17]. Depending on P„, it

describes all the symmetry-breaking patterns compatible
with such an order parameter. The non-Lorentz-in-
variance of (I), i.e., Po not proportional to P&, is really
meaningful since it allows the three spin waves coming
from the breaking of the O(3) rotation group to have

different velocities, el, c2, and c3. We give another ex-
pression of action (I ), convenient for the following:
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helical models.
Our program is as follows. We first briefly discuss the

recursion relations associated to action (2) and show that
there exists some scale at finite T where the quantum
model becomes effectively classical. Then we calculate,
by integrating over the quantum fluctuations, the action
of this effective 2D classical O(3)SO(2)/O(2) NLo
model. Finally we compute the two-loop correlation
length g of the classical model, from which will follow
that of the quantum system. Computational details will
be given in a forthcoming publication [18].

D=2 quantum model. —If not for the breaking of the
Lorentz invariance, i.e., g,s ccp,b, the action (2) would be
that of the D=3, O(3)SO(2)/O(2) NLo model which
has been recently extensively studied [16,17]. We obtain,
in the present non-Lorentz-invariant case, the one-loop
recursion equations for the parameters entering in (2):

8CI Cl
3

Cl C3
(1 —a)

tll 8tr c3 C|+C3
8C3 CI

(I —a)(cI —c3),
tll 16tr C3

(3)
tlg g c3+ac I= —g+ c[|ll 4tr cI+c3

Ba g (I —a) [c3(l +a) + (3a —I )cI],
tll 8Ã cI+c3

where g=2/pI, a= I —
p3/pI, cI and c3 are dimensionless

couplings. From the field-theoretic point of view, these
recursion relations stem only from the ultraviolet behav-
ior of the theory and are not affected by the presence of
the infrared cutoff p in the time direction. The renormal-
ization group equation for p follows simply from the fact
that it scales trivially since it is dimensionless:

(4)

Note that contrary to collinear antiferromagnets, the
spin-wave velocities c| and c3 do renormalize at this or-
der. This is a consequence of the non-Lorentz-invariance
of the theory. The flow diagram is sketched in Fig. 1 in a
truncated space. Equations (3) and (4) admit a nontrivi-
al fixed point with only one relevant direction which is ob-
tained for T=O, g =8tr/C3, cI =c3, and pI =p3, i.e.,
a =O. At this point the theory is Lorentz invariant and
O(3) SO(3)/O(3) -O(4)/O(3) symmetric. As is the
case for the classical O(3)SO(2)/O(2) NLcr model in
D=2+e, the symmetry is dynamically enlarged at the
fixed point [16,17]. Associated to the above fixed point,
there exists a critical hypersurface which divides a disor-
dered, possibly spin-liquid phase, for small S, from a
Neel phase, for large S. Then, at T=O, when one varies,
say, the spin S, the quantum model undergoes a second-
order phase transition from Neel to disordered phase, the
universality class of which is the usual Wilson-Fisher
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FIG. l. Sketch of the RG flow in the five-dimensional space
of coupling constants (T,g, X={a,cI,cJ).

exp — d'x L.Ir(gp(x) )

I dp[ttI]exp — dt d xL(gpe ), (5)

where dp[p] is the Haar measure on SO(3). When ex-
pressed in terms of the co; fields, S„~ is found to be, at
one-loop order and using a Pauli-Villars regularization
scheme,

S„Ir[tp(x) ] =. d 2x (p.Ir),I, (M) rp,'(x) tp,'(x), (6)

N=4 one. There also exists a whole hypersurface of
fixed points with T=O and g*=0, i.e., S ~, which
controls the long-distance physics of the spin waves in the
Neel phase. In this phase, starting at low temperature,
the RG flow, (3) and (4), drives the system towards a
higher-temperature quasiclassical regime where the quan-
tum fluctuations are negligible. Since Eq. (4) has a solu-
tion with p(l) =pe ', we expect that at some scale,
e * =kp, the quantum model is equivalent to a purely 2D
classical O(3) SO(2)/O(2) NLo model with effective pa-
rameters p,s(l ). Once the matching scale is known,
these parameters can be reexpressed in terms of the tem-
perature T, the spin-stiffness tensor p,y, and the spin-
wave velocities c|,c3 renormalized by the quantum fluc-
tuations at T=O. However, as this precise matching
scale e'* cannot be obtained from the recursion relations
(3),(4), we shall have to integrate the quantum fluctua-
tions in action (I) or (2) in order to obtain directly the
effective D =2 classical NLo model.

D =2 renormalized classical model. —To integrate out
the time-dependent part of the fluctuations, we make the
following decomposition of the field g in action (I),
g(x, t) =gp(x)e~ "', where I1I(x,t) E Lie[SO(3)]. The
above decomposition is unambiguously defined provided
that fop(x, t)dt =0, which ensures that the Fourier com-
ponents of tt, p(k, tp„), do not contain the classical pI =0
mode. The effective action S„tt. is defined by the following
equation:
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with as

(p„.g) I, (M) =Pp,p+ InPM R,„(p)+ (,p(p, c), (7)1

2R 27'
'

where M is the mass of the Pauli-Villars particle, and p, b

and c, are the spin-stiffness tensor and the velocities at
T=O renormalized by the quantum Auctuations. The ex-
pressions for the diagonal tensors R,i, (p) and g,p(p, c)
are

(p..(i).(, (M) =(pg)„g(P ')

where

+ InPM R,i, (pR)+O(P '),
21K

(pn).p(P ') =Pp„p, + (I/2n)g, p(p, c) .

(9)

R)( =R z= —,
' (I+a), R33= I (I —a)'-,

(~~ =g2q= —,
' a inc'~+ —,

' (I —a)
(8)

x
—2-2

1

—2 —2 —2
inc 1—

C] C3 Ct

1

2
lncg

cq

(33 = —,
' (I —a) Inc~ .

R„q(p) is nothing but the Ricci tensor of the manifold
O(3)SO(2)/O(2) which is the expected counter term
one should obtain from a one-loop calculation of the 2D
classical O(3)SO(2)/O(2) NLo model with couplings

p, i, [16,19]. Finally, (',1, (p, c) is the finite part which fixes
the desired matching scale between quantum and classi-
cal renormalized regions. Equation (7) can be rewritten

The equation (9) is the one-loop renormalization group
equation of the 2D-classical O(3) SO(2)/O(2) NLo
model which relates the bare couplings p,.[T, defined at
scale M, to the renormalized ones pR, at scale P '. This
shows that Eq. (10) defines, at one-loop order, the desired
relation between renormalized couplings of the effective
classical model at scale P

' to those of the quantum
model, renormalized by the quantum Auctuations. It is

this equation which enables us to obtain the properties of

the quantum model from those of the corresponding clas-
sical ones. In the following, we shall be interested in the
correlation length of the quantum model so that we need
the expression for the classical one. To this end, we have
calculated the two-loop P functions for the classical
O(3) SO(2)/O(2) NLcr model and found for the correla-
tion length at the corresponding leading order

g,.~
=p 'C~ "v (I —a)g exp[ ——„' [(I —a)G(a) —G(0)]]exp[2+G(a)/g],

where g =2/p~ and a = I
—

p3/p~ are renormalized couplings defined at the scale p, and G(a) is given by

G(a) =2+ 2(1 —a)(arctanh Ja)/Ja, 0 ~ a ( I,

G(a) =2+2(l —a)(arctanv' —a)/4 —a, a ~ 0.
(i 2)

Finally, C~" is a constant, independent of a, which depends on the regularization scheme, Pauli-Villars (PV) in our case
[20]. Using (8), (10), and (I I) our final expression for the correlation length of the quantum O(3) SO(2)/
O(2) NLcr model is

where

~/2
2(l —a)

Pl

2', G(a)
expt ——„' [(I —a)G(a) —G(0)]]exp

2k' T
(i 3)

K =Ac~exp — [(I —a)G(a) —G(0)] I+1
—a

16a

In(c3/c()'

I
—(c3/c))'

(i 4)

t

The renormalized spin-wave velocities and spin-stiffness
constants are to be understood in natural units. Equation
(13) is the general expression for the correlation length of
frustrated quantum antiferromagnets with zero net mag-
netization. It contains no adjustable parameter and de-
pends only on the renormalized couplings c[, cq, pt, and
a. These constants have to be taken, as argued by CHN,
as phenomenological input parameters, which can be ob-
tained either from experiment or spin-wave calculation,
for example. In Eq. (13), KP is nothing but the matching
scale between quantum and classical renormalized re-
gimes.

In our expression for („„.„„,, the preexponential factor
behaves as I/JT and differs from that of both Heisen-

berg, i.e., !V=3, ferromagnets where it scales as JT and

of Heisenberg collinear antiferromagnets where it turns
out to be temperature independent. Apart from the non-

trivial a and e3k~ dependence, Eq. (13) would be quali-

tatively that of a %=4 collinear quantum antiferromag-
net, a result which is to be compared with the W =4
universality class found in D =2+t. for the magnetic
phase transition of the corresponding classical model

[i6, i 7].
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To gain a better insight on how (13) applies, we con-
sider the problem of He adsorbed on a graphite sub-
strate which is thought to be modeled by a Heisenberg
S = —,

' model on the triangular lattice. Depending on cov-

erage, the interaction may be either ferromagnetic or an-
tiferromagnetic [11]. Kopietz er al. [21] have recently
calculated the correlation length in the ferromagnetic
case, for which they found

elF =a(0039 ~0.013)S ' (T/RJS ) '

xexp(2+RJS /T), R =J3. (I 5)

Taking the bare values as given by Dombre and Read
[15] for the spin-stiA'ness and spin-wave velocities in Eq.
(13), we obtain c

~
=343JSa/2, c3/e~ =J2, p~

=J3JS /
4, and a = —I. Using Eqs. (13) and (14) we find for the
antiferromagnetic case

(At, =a(3.48)C~ "v RJ/T exp(0. 64 2nRJS /T) . (16)

The precise value of C~ is not known at the moment;
however, it is reasonable to think that it is of the same or-
der of magnitude as that of the ferromagnetic case. As it
can be readily seen (At, is considerably smaller than (F.
This is the consequence of the frustration. This eA'ect

might be even stronger if instead of taking the bare
values for the coupling constants, we take the renormal-
ized ones as given by some improved spin-wave theory.
Such a behavior could be, in principle, detected in experi-
ments. Let us emphasize that the measurement of g„„„„t
should provide a test for the existence of long-range order
in quantum canted antiferromagnets.
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