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The nonlocal elasticity and the normal modes of an unpinned flux-line lattice (FLL) in a uniaxially
anisotropic superconductor are considered in the low induction regime b =B/B;i« I at oblique angles 8
between B and the c axis. A novel feature of anisotropic superconductors is strongly dispersite shear
moduli when 8& 0. Thus, the normal modes of the FLL may become soft away from the zone center,
signaling a k&0 structural instability of the distorted hexagonal FLL. Vortex structures of a novel type
are thus possible in anisotropic superconductors.

PACS numbers: 74.60.Ec, 74.60.Ge

Since the discovery, by Bitter pattern decoration exper-
iments, of apparently thermally decorrelated flux lines in
the high-T, . superconductors YBazCu307 and Bi22Sr2-
CansCu20s even at quite low temperatures [I], a central
and theoretically interesting issue has been whether or
not a flux-line lattice (FLL) may melt [2]. Several
groups have tackled this problem [2-4]. It is well estab-
lished that the FLL in anisotropic extreme type-II super-
conductors is intrinsically soft due to the long range of
vortex-vortex interactions [3-5].

More recent decoration experiments [6] at low T re-
vealed fascinating, exotic vortex arrangements (vortex
chains embedded in a vortex lattice) when the applied
field was oriented at oblique angles with respect to the
crystal c axes. This observation was not expected from
earlier work on anisotropic superconductors, which for
very small B predicted vortex chains without a FLL in

between [7). This observation raises the interesting ques-
tion of whether a "simple" FLL may be unstable due to
the anisotropic character [8,9] of the long-range vortex-
vortex interaction.

In this paper, we address the issue of the stability of a
class of hexagonal FLLs so far believed to represent the
(unpinned) vortex ground stale in an anisotropic type-II
superconductor. We will demonstrate the instability of
these proposed ground states at sufficiently low inductions
in very anisotropic superconductors at large angles
B=l(B,c), provided that the nonlocal character of the
anisotropic vortex-vortex interaction is accounted for
properly. Throughout this paper we therefore use nonlo-
cal, anisotropic London theory, which is valid when
b=B/B, q&0.25 and tr» I.. Here, tr is the Ginzburg-
Landau parameter and 8,.2 is the upper critical field. The
region of very low reduced induction b =B/B,.q«1 is of
particular importance in high-T, . superconductors due to
their large values of B,.2.

The total energy of an arbitrarily distorted system of
unpinned vortices may be derived from the anisotropic
London equations [10],

F = g „„dry'drP V,p(r; —rI) .S~; j»

Here, V,p(r) is the nonlocal interaction potential between
any two infinitesimal vortex segments in the system,
(a,p) 6 (x,y, z), and Go=2.07X10 Gcm is the flux
quantum. Expanding this energy to second order in the
displacements u(k) of the flux lines from their equilibri-
um positions in the ground state, we find the excess ener-

gy due to these displacements,

1
' d kIJF = —,u. ( —k)e.p(k) up(k),

2tr ' (2)

where now (a,P) 6 (x,y) (flux lines along z). The elas-
tic matrix @ p(k) is given by [9]

B2+,p(k) = g [f,p(k+Q) —f p(Q)],4z q
(3)

f,p(k) k V,p(k)+k, kpV (k) —2k kpV ,(k) . -(4)-

The sum runs over the reciprocal-lattice vectors of the
FLL in its appropriate ground state. The last term of the
tensor f,p(k) in Eq. (3), first considered by Sardella [9],
vanishes for all k when Bllc; then only one shear modulus
of the FLL exists. At oblique angles, however, this term
gives rise to an additional anisotropy in the shear stiffness
if one goes beyond the local limit k 0 discussed in Ref.
[11],but does not influence the tilt moduli of Ref. [9].

The above expressions are quite general and make no
reference to specific values of the reciprocal-lattice vec-
tors, which should only belong to an equilibrium FLL.
For uniaxially anisotropic London superconductors the
Fourier-transformed interaction tensor V,p(k) is given by
[9,10]

V (k)= a — (5)
1+Ates 1+A]k +A2q

where At =A,,t„A2 =A, , —
A.,I„q=kxc, X,I, and X,. are the

magnetic penetration depths parallel and perpendicular to
the basal a-b plane, respectively, and g,s and (,. are the
corresponding coherence lengths. One has A, ./A, ,s
=g„t,/(, . =(M-/M) ' '-, where M-/M is the mass anisotro-
py. The cutofl' factor in Eq. (4) contains g=(,t, q
+g, . (k. c)-', which means that the lattice sum is ellipti-
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+B,p[cee(k)(k,'+k, '. )+c44(k)k-'] . (6)
In isotropic superconductors, the assumption cee(k)
= cee(0) is indeed quite reasonable for k & 0.3k az,
where k gz is the radius of the circularized Brillouin zone,
kaz =4Bnj&o. For the case 8=0 this finding remains
true even in uniaxially anisotropic superconductors. For
8AO there are two shear moduli, cee and cee (easy and
hard) [11]. These two moduli may be extracted from the
elastic matrix & p(k) as

(,) &„-(O,k,O)
ce'e' k = 7k'-

&py (k 0 0)
k

cee k

cally cut off at Q vectors of the order of the core size. In

the isotropic case this cutoff was shown to reproduce the
results of the Ginzburg-Landau theory [5]. For uniaxial

anisotropy and not too small b)) I/2tc, the equilibrium
FLL predicted by [11] has reciprocal-lattice vectors

Q„,„=nQt+mQq, where Q~ =2n(%3y+ y x)/J3a);
Qq=4nyx/J3a, a =2@o/J3B, and y =cos 8 +M/M-
xsin 0. Here, 0 is the angle of the induction B away
from the c axis of the uniaxial superconductor.

The various elastic moduli of the FLL, derivable from

Eqs. (2) and (3), are central quantities in the statistical
mechanics and dynamics of the FLL and hence deserve
special attention. In particular, the tilt modulus c44(k)
and shear moduli are crucial in theories of thermal fluc-

tuations [2-4] and collective pinning of the FLL [12].
The bulk modulus c~ ~(k) normally plays a less prominent

role, entering the theory of collective flux creep at T & 0
[13] but not the collective pinning theory at T=O [12]:
The thermally activated "jumping volume" depends on

the bulk modulus, whereas the static "correlated volume"
does not.

A detailed discussion of dispersive tilt moduli of the
FLL in anisotropic superconductors has been given else-
where [8,9]. Their main term originates from the overlap
of the vortex fields, has Lorentzian dispersion, and is pos-
itive at all k. Hence, nonuniform tilt waves do not induce
a structural instability of the FLL. This is a general re-

sult, independent of the specific FLL structure.
Usually, it is assumed that the shear modulus of the

FLL is essentially dispersionless in the dominating part
of the Brillouin zone (BZ). Given the importance of the
dispersion of the tilt moduli and the large contribution of
k values close to the BZ boundary to the thermal fluctua-
tions of the FLL [3], it is fair to check to what extent the
equally important shear moduli really are dispersionless.
These moduli depend on the structure of the FLL, and
yield important information about its stability. For an

isotropic superconductor, the shear modulus and its
geometric dispersion were calculated numerically in Ref.
[5] from the elastic matrix @,p(k), using the definitions
cee(k) =@„(O,k, O)/k and cee(k) =4, , (k, 0,0)/k,
which are obvious from comparison of Eq. (3) with the
expression for the elastic matrix in continuum theory,

@,p(k) = [c(((k) —cee(k)]k, kp
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FIG. I. Dispersion of cee (k)/cef, (k=0) at 8=0, z/8, x/4,
and 3x/8, with x. =50, M-/M =3600, and b =8/8, . ~=0.000l
(rigid ilux lines, k- =0). Note change of sign in cef, '(k) for
k, y/g~e=0. 62 at 8=3a/8, signaling a structural instability of
the FLL. Inset: cef, (8) and cee (8) at k=0, normalized to
their values at 8=0, for three mass anisotropies M-/M =2, 5,
and 25, at b=0.OOOI and a. =50.

This may again be seen by comparing Eq. (3) with the
Fourier transform of the general elastic energy of a FLL
of rigid vortices (since k- =0 for pure shear) when also a
torsion term describing the coupling of the FLL to the
underlying uniaxial crystal is included [I I].

The shear moduli cee (8) and cee (8) as computed
from Eq. (6) at the zone center k=O agree with the re-

sults of Ref. [I I], where a different cutoff scheme to trun-

cate the lattice sum at the vortex core was used. The re-

sults for M /M =-2, 5, and 25, b =0.0001, and tc=50 are
shown in the inset of Fig. 1. For k=0, both cee (k) and

cee (k) remain positive for all 8E [O, n/2]. The small

value of cee (8) for k=0 and 8= n/2 is responsible for
the existence of a whole class of nearly degenerate hexag-
onal vortex structures with one vortex per unit cell
[i4, iS].

We next consider the shear moduli at ftnite values of k.
A surprising feature that we find is the pronounced
dispersion of cee (k) when 8~0. This is shown in Fig. I

for parameters tc=50, b=B/B, 2=0. 0001, and M /M
=3600. Note that in this case cee (k) changes sign at
k, , y/Q~p 0.62, when 8=3'/8. Using the same parame-
ters as above, but M /M =25, no change of sign in

cee (k) is seen at any angle. The hard modulus cee)(k) is

only weakly dispersive and remains positive down to the
lowest fields (b =0.00001) that we have considered.

1759



VOLUME 68, NUMBER I I P H YSICAL R EV I EW LETTERS 16 MAR@@ l992

The reciprocal-lattice vectors g„,„which we use in cal-
culating the matrix &,t&(k) and structure-dependent elas-
tic moduli, given below Eq. (4), represent the global
minimum of a class of variational solutions obtained by
uniform deformation of trial lattice structures [14,15].
This is the reason why the structure-dependent elastic
moduli at k=0 are found to be positive at all angles. As
we have seen, c66 (k) may become negative at finite k
when 0 and M-/M are sufficiently large and b is

sufliciently small. This finding hints at a structural in-
stability ~ith respect to periodIc shear of the FLL
defined by the above-given g„,„.

The origin of the strong and weak dispersion of c66'(k)
and c66 (k), respectively, when 0&0, may be understood
qualitatively by considering rigid vortices (k- =0) in the
limit of small but finite k. Using Eq. (6), we obtain to
leading order in k,

0.04
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0.00—

0= ——
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ky&

Kio

t)V Qc'" (k) —c " (0)-k Qg'

n (k) =c66(k)k j +c44(k)k='. (9)

The hard mode 0+(k) in this geometry corresponds to a

longitudinal mode which, however, goes soft at k=0.
This is due to screening of the magnetic field by super-
currents, and a resulting exponentially small interaction
potential at large enough distances. In the continuum
limit, we find

t)+(k) =., (k)k +...(k)k-'. (l 0)

Here, the bulk modulus c
& &

(k) of the FLL [3,5] is
Lorentzian dispersive, as is the tilt modulus c44(k), due to
the long-range interaction between Aux lines. Since
c«(k) »c66(k) for k & K&o/2, particularly at very low in-

ductions, the transverse mode is the dominant mode of
fiuctuations of the FLL at 0=0. Both modes 0 (k)
remain hard in the entire BZ away from the zone center.
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and similarly for c66 (k) —c66'(0) with x,y indices in-

terchanged. The anisotropic part of V-- (Q) ——(X,
'

t,,&)—sg, - sin 0/(I +X. sg„+X&&g&)(l +),a2bg '), with-

=A, sin 8+k. cos B. Thus, V--(Q) will depend more
strongly on g, than on g„at large Q when 9= tr/2 and
M-/M » I, and the correction to the isotropic result is

larger for c66 (k) than for c66 (k) in very anisotropic su-

perconductors. The latter essentially retains its weak

dispersion at 0=0, which is the same as for the isotropic
case.

Given the above results, we further investigate the sta-
bility of the FLL by considering its strongly dispersive
normal modes. Regardless of the symmetry of the FLL
or the orientation of the induction B, the FLL always has

precisely two normal modes since only displacements per-
pendicular to the flux lines have physical significance.
The normal modes 0 —(k) of the FLL are found by di-

agonalizing the matrix 4,p(k). At 0 =0, the mode
0 (k) corresponds to a transverse phonon mode, which

in the continuum limit k4 «K&o =4tr/J3a is given by

I J X l'

FlG. 2. Normal mode 0 (k)/N&& along three symmetry
directions in the BZ for rigid fiux lines (k- =0) and mass aniso-
tropies M-/M =25 and 3600 at 0=3&r/g, with No=8-'/4z. We
have used b=B/B, &0.000l, and «=50. The normal mode is

plotted with k, in units of K&oy and k, in units of K&~&/), with

) =(cos-'t)+M/M- sin-'0) 't, and K&0=4&r/J3a.

This is expected from our discussion of c66'(k) at B=O,
which demonstrated that the FLL is robust against
nonuniform shear deformations in this geometry, as is

also the case for tilt and compressional deformations [9].
We now turn to the more interesting situation where

BWO. From our consideration of the modulus cq6'(k) we

are led to consider 0 (k) at 8=3tr/8; 0+(k) remains
hard, and will not be considered further. In Fig. 2, we

show 0 (k) at b =0.0001, « =50 for M-/M =25 and

3600. The most important feature is that this mode be-
comes completely soft at ftnite k &ectors in the Brillouin
=one when M-/M=3600, but not for M /M=25. Fur--
ther, in Fig. 3 we show 0 (k) for the parameters
M-/M =3600, &v=50, and 0=3tr/8 for various values of

b E [0.0001,0.0004]. While the mode is soft at finite k

for b =0.000l and 0.0002, this is not the case for the

largest inductions. These results show that the instabili-

ties of a hexagonal FLL only develop at very low induc-

tions in very anisotropic superconductors provided also
that the vortices are tilted away from the c axis. It is not

necessary to invoke surface effects or boundary condi

tions to see these instabIlities.
In preparation for the numerics, it is discovered that

the value of 0 (k)/(B~/4tr) is controlled by the vortex-

field overlap parameter yo=—&(.„t,K &a =4trb&c /J3 Struc-.
tural instabilities of the FLL at too large values of yo are
not possible, since substantial overlap of vortex fields

renders the effective intervortex interaction uniformly

repulsive. In this regime of larger inductions 0.0002
((b (0.2 we therefore expect a stable hexagonal FLL at
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unpinned rigid vortices, at oblique orientations of B, is a
highly nontrivial problem. Its solution will require non-

linear terms in the elastic energy to be added, obtained
from a further expansion of the total energy, Eq. (I).
The novel type of ground state is likely to be a FLL with

a basis or, more generally, a flux-density wave. The
reconstruction of ground states that we have found for
M-/M =3600 may be related to the exotic vortex struc-
tures observed in Biz 2Sr2Caa sCuzOs [6]. For M-/M
=25, we find that a conventional distorted hexagonal
FLL is stable for b =B/B, .z )0.0000 I at all angles
8=/(B, c). This means that a barrier must exist for the
reconstruction of the hexagonal lattice for these pararne-
ters. Our main point is that anisotropic London theory
does provide a framework for discussing flux-line lattices
with exotic vortex structures, not only conventional Abri-
kosov lat tices.

One of us (A.S.) acknowledges useful discussions with

P. L. Gammel and H. Hess.
FIG. 3. Same as Fig. 2, for one value of M-/M =3600 with

reduced induction b =B/B, ~ =0.0001, 0.0002, 0.0003, and

0.0004. Only at the two lowest inductions is 0 (k) soft for
finite k.

all angles 0. This is consistent with recent results of Ref.
[8], which in this field regime treated the nonlocal elasti-
city at oblique angles of the induction by scaling transfor-
mations of the isotropic case. In particular, the thermal
fiuctuations of the vortices (obtained by integrating
[0 (k)] ' over the BZ) were found to be finite.

Recently, FLL structures were investigated theoretical-
ly for the case where the vortices were slightly inclined
with respect to the easy a-b plane [14]. A class of nearly
degenerate solutions were found (B= tr/2), yielding
FLLs with a rhombic unit cell highly compressed along
the direction of the easy plane, of which the FLL found
in Ref. [15] comprises the global minimum. The calcula-
tions of Refs. [14,15] considered, by assumption, only
uniform (k=0) fiux distributions. However, the instabil-
ity we find, at Pnite k, implies a vortex ground state of a
diferent nature than those discussed in Refs. [14,15]. A
particular possibility is one where the vortices form a
FLL with a basis. In general, however, instabilities will

be found at wave vectors which are not rational fractions
of the reciprocal-lattice vectors of a distorted hexagonal
lattice, allowing incommensurate flux-density waves to
form.

In summary, we have discussed the structural instabili-
ty of a class of hexagonal FLLs in uniaxial superconduc-
tors at oblique orientations of 8 in the extreme low-
induction regime. The instability is induced by nonuni-
form (finite k) shear deformations of the FLL. Since
they are found at finite k in the first BZ and are brought
about by the surprisingly strong dispersion of the easy
shear modulus e6161(k), they can only be detected through
the use of nonlocal elasticity theory. The precise deter-
rnination of the correctly reconstructed ground state of
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