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Many-Body Properties of a Quasi-One-Dimensional Semiconductor Quantum Wire
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We study the many-body exchange-correlation properties of electrons confined to the lowest subband
of a quantum wire, including effects of impurity scattering. Without impurity scattering, virtual excita-
tions of arbitrarily low-energy plasmons destroy the Fermi surface of the electrons, whereas the presence
of impurity scattering damps out these plasmons and restores the Fermi surface. The electron inelastic
scattering rate I in the absence of impurity scattering is zero below k, corresponding to the plasmon
emission threshold, above which I diverges as (k —k, ) t . For typical wire widths and electron densi-
ties currently available, the band-gap renormalization is found to be —10-20 meV.

PACS numbers: 73.20.Dx, 7 l.45.Gm, 72.20.Ht, 73.20.Mf

There has been a great deal of recent interest [1] in ul-

tranarrow confined semiconductor systems, called quan-
tum wire structures, where electron dynamics is essential-
ly restricted to be one dimensional. Such quantum wires,
with active widths (along the plane of confinement)
smaller than 300 A and of negligible (less than 100 A)
thickness, have recently been fabricated [2,31 and contin-
ued improvement in growth and fabrication techniques
should lead to even more confined and better defined
wires in the near future. While there is much excitement
about the potential applications of these semiconductor
quantum wires as high-speed transistors and e5cient pho-
todetectors and lasers, these systems have also generated
great fundamental physics interest as examples of real
one-dimensional Fermi gases, where one-dimensional
electron dynamics can be studied in a controlled and
quantitative manner (just as semiconductor inversion lay-

ers, heterojunctions, and quantum wells have been serving
as useful physical models for two-dimensional Fermi sys-
tems for the last decade or so). Recent fabrication break-
throughs [2,3] have allowed the attainment of the truly
one-dimensional electric quantum limit, in the sense that
only one quantum subband is populated by the electrons
in the quantum wire so that the one-dimensional interact-
ing Fermi-gas model is valid. Theory predicts very

unusual properties for interacting one-dimensional Fermi
systems, and the semiconductor quantum wires should be

ideal for experimentally observing these properties. How-

ever, thus far, all experimental results [1-4] of electronic
properties of quantum wires seem to be explicable on the
basis of a normal one-dimensional Fermi-liquid model.

The purpose of this Letter is twofold. (I) We want to
address the issue of why the one-dimensional quantum
wire electrons seem to behave as normal Fermi liquids

despite convincing well-accepted theoretical claims that
both disorder and interaction effects are singularly non-

perturbative in one dimension and should lead to ground
states which are drastically different from normal Fermi
liquids (such as strongly localized systems or Luttinger
liquids [5]). (2) We present calculated results for two

important experimentally measurable Fermi-liquid prop-
ertIes for the quantum wire electrons, the electronic in-

elastic mean free path and the band-gap renormalization.
Our calculation is, to the best of our knowledge, the first
complete realistic theory of many-body exchange-corre-
lation effects in one-dimensional quantum wire systems;
similar early calculations [6] in two-dimensional elec-
tron-gas systems were useful and important in the devel-

opment of that subject.
Addressing point (1) of the paper, we begin by men-

tioning three important ways in which an ideal one-
dimensional electron gas is theoretically expected to be
strikingly diferent from their higher-dimensional coun-
terparts. I n each case, a perturbation to the system,
which in higher dimensions tends to leave the system in a
Fermi-liquid state, theoretically drastically changes the
behavior of the system in one dimension (i.e., the Fermi-
liquid behavior is a highly unstable fixed point in one di-
mension). We then argue that actual semiconductor
quantum wires may behave differently from the theoreti-
cal zero temperature ideal because of the effects of finite

temperature, finite size, and scattering, which may serve

to stabilize Fermi-liquid behavior in the semiconductor
quantum wires.

First, the presence of any electron-phonon coupling
(which is invariably present) in a one-dimensional system
theoretically should result in a lattice Peierls distortion

[7], accompanied by a charge-density-wave ground state
at zero temperature. However, in actual semiconductor
quantum wires, the electron-phonon interaction via the
deformation potential coupling is so weak that even at the
low temperatures, at which experiments on these systems
are performed, the Peierls distortion does not occur. The
second important consideration for quantum wires is

disorder-induced Anderson localization [g]—in one di-

mension (unlike higher dimensions), the presence of any
disorder localizes all electronic states. The currently fab-
ricated semiconductor quantum wires are obviously not

disorder free, and hence, in the electric quantum limit, all

the quantum wire electronic states are exponentially An-

derson localized, and the concept of an electron gas strict-

ly should not apply here. However, we argue that in the
state-of-the-art high-quality semiconductor quantum
wires incorporating modulation doping techniques, typical
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localization lengths are very long (many microns) and
therefore in these wires the electrons may be considered
to be extended for all experimental purposes.

The third important way in which ideal one-dimen-
sional Fermi gases differ from equivalent higher-dimen-
sional systems is that the presence of particle-particle in-

teractions theoretically makes the Fermi-liquid model
inapplicable to one-dimensional systems [5]. Instead, the
paradigm for interacting one-dimensional Fermi systems
is the strongly correlated Luttinger (also called Tom-
onaga-Luttinger) liquid. Hence, in the electric quantum
limit semiconductor quantum wires should behave as Lut-
tinger liquids. In experiments involving luminescence, in-

elastic light scattering, far-infrared spectroscopy, capaci-
tance studies, etc. , on the other hand, quantum wires have
shown no obvious sign of Luttinger-liquid behavior, seem-
ingly behaving instead as normal one-dimensional Fermi
liquids. For instance, an essential feature of a Luttinger
liquid is that it has no Fermi surface (i.e., the momentum
distribution function nl, is continuous through the Fermi
momentum kF) and yet luminescence experiments show
large Fermi edge singularities [2]. In this paper, we sug-
gest, based on our theoretical results, that in the real
quantum wires impurity effects can suppress Luttinger-
liquid behavior in semiconductor quantum wires, causing
them to behave as normal one-dimensional Fermi liquids.
Thus, the effects of the strong correlations of the Lut-
tinger liquid, just as the Peierls instability and Anderson
localization, may be negligible in real quantum wires.

In this work, we calculate the zero-temperature
leading-order (in the dynamically screened interaction)
self-energy Z(k, co) of electrons that are confined to the
lowest-energy subband of quantum wire of width a and of
zero thickness with infinite potential barriers. We ignore
contributions from higher-energy subbands on the
grounds that they should be irrelevant in the limit where
the electron Fermi energy is much smaller than the sub-
band energy separation. (The calculation can of course
be extended to include higher subbands. ) Knowledge of
Z(k, r0) allows one to calculate many experimentally ob-
servable one-electron properties of a system. We calcu-
late Z(k, ro) using the so-called GW approximation [9],
which has been highly successful in describing properties
of real two- and three-dimensional electron systems.
Z(k, c0) is determined by the dynamical screening proper-
ties of the electron gas in the wire, which is quantified by
the dielectric function e(q, m). We assume that e(q, co) is
given by the random-phase approximation (RPA)
[IO, I ll, which has recently been shown [12] to exactly
reproduce the plasmon dispersion of one-dimensional sys-
tems. We include the effects of impurity scattering on
e(q, co) through the modification given by Mermin [13],
in which the scattering is described by a single relaxation
rate y.

A system is a Fermi liquid if it possesses a Fermi sur-
face (i.e., a discontinuity in nl, ) whose presence is indicat-
ed by a 8 function in the spectral function A(k, co) at

k =kF and r0=0. The existence of a 8(co) in A(kF, r0)
depends crucially on the behavior of Im[Z(kF, ro)] as
co 0. If ~lm[Z(kF, ru)]~ goes to zero faster than ~m~,

then A(kF, m) has a 8(co), indicating that the system is a
Fermi liquid. The discontinuity in nl, at kF is proportion-
al to the weight of this 6' function and is called the renor-
malization factor ZF [14]. In contrast, if ~lm[Z(kF, m)]

~

goes to zero slower than ~io~, then there is no 6 function
in A(kF, co), implying that the system is not a Fermi
liquid [5,151. Two- and three-dimensional systems with

and without disorder in general are Fermi liquids [16].
Through a study of Im[Z, „,(kF, co)], we show that in one
dimension the system is (is not) a Fermi liquid in the
presence (absence) of impurity scattering.

The imaginary part of Z(kF, co) is a measure of the vir-

tual transition rate to all states of energy less than co

away from the Fermi energy. At low energies in two and
three dimensions, single-particle scattering is far more
important than plasmon scattering because the single-
particle excitation spectrum is gapless and the phase
space available for single-particle scattering extends
around the entire Fermi surface, whereas the plasmon
dispersion either rises quickly or has a gap at q=0.
Therefore, for small co, the major contribution to
Im[Z(kF, ro)] in two and three dimensions comes from
[irtual sI'ngle-particle excitations. In contrast, in one di-
mension, the single-particle excitation spectrum has a gap
except at ~q~ =0,2kF, and the phase space available for
single-particle scattering is severely restricted, while the
plasmon dispersion is gapless at q =0. Hence, in one di-
mension, Im[Z(kF, r0)] at small ro is dominated not by
virtual single-particle excitations but by the [.irtual exci-
tation of plasmons This . unique feature of one-di-
mensional systems gives rise to interesting consequences,
which we describe next.

In the case of a clean quantum wire (y=0), we find

within the RPA that the dominance of the virtual low-

energy plasmon excitations results in
~ Im[Z(kF, m)]

~—~co) )In()co[)(', indicating, as noted earlier, that the
Fermi surface does not exist (in agreement with
Luttinger-liquid theory). In other words, because of the
ease with which particles at the Fermi surface can emit
virtual low-energy plasrnons, the Fermi surface smears
out to the extent that a sharp discontinuity in nI, no
longer exists. However, the inclusion of impurity scatter-
ing causes the electrons to diffuse at long wavelengths
which damps out the plasmons at small q. Hence, the
plasmon contribution to Im[Z(kF, co)] at small ~ro~ is re-
moved, resulting in Im[Z(kF, m)](-co [In((ro))) as )co(

0, which implies that the Fermi surface is restored.
This result indicates the Fermi surface is resurrected in

dirty systems because the low-energy virtual plasmon
emission responsible for its destruction in clean systems
has been suppressed by impurity scattering.

In Fig. 1, we show our calculated Fermi distribution
function nq =(2~) 'fdroA(k, co) for various values of
the impurity scattering rate y. We emphasize that y was
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FIG. I. Momentum distribution function nl, of a quasi-one-
imensiona! electron gas around k/kr = I, for kI a =0.9 and

r,v=2m, e '/rr. t1'-ki e-p=.0.7 (corresponding to a =100 A and den-
sity of 0.56x l0" cm ' in G A' 'n GaAs), for various impurity scatter-
ing rates y. The bold lines refer to k ) k&-, and the thin lines to

& II:. For y=O, nI, is continuous at k =k&-, implying that the
system is non-Fermi-liquid, but for y&0 a da iscontinuity occurs
at k =kg, signaling the presence of a Fermi surface. Inset: The
Fermi surface renormalization factor Z h' h

'
hF, w ic gives the mag-

nitude of the discontinuity in nl, , is shown as a function of y 0

k/kp
FIG. 2. In ie!astic scattering rates I (k ), us a function of k, for

various y's (electron-impurity scattering rates), for kI a =0.9
and r., =0.7. %'ithin RPA, for y=O, the I (k) is identically zero
below k =k because energy and momentum conservation
prohibits single-particle excitations and plasmon emissions.
Above k, , the scattering rate is caused by plasmon emissions.
For y&0, the plasmon line broadens and momentum conserva-
tion is relaxed, resulting in a nonzero I for k (k, . Inset: The
corresponding mean free path l(k ) =k/m! (k ).

included only in the dynamical screening function and noi
in the single-electron Green's function because we wanted
to determine if the suppression of the emission of low-

energy virtual plasmons produces a discontinuity in nq.
Figure 1 clearly shows a discontinuity in ni at k =kF for
y/EFCO. Note that if we included effects of y (or finite
temperature) in the single-electron Green's function, nk

would have been broadened in the usual way and the re-
sult would look very similar to nonsingular higher-
dimensional broadened Fermi functions. These details
will be published elsewhere. In the inset, we show the
ca culated ZF as a function of the impurity scattering
rate. For y=0, ZF =0 indicating that there is no Fermi
surface, but as scattering is increased ZF also increases
until it saturates at very large y (where our results should
not be trusted because our treatment ignores localiza-
tion . Note that ZF goes to zero slowly as y 0, imply-

ing that even a small amount of impurity scattering re-

sults in a fairly pronounced discontinuity in nl, at kF.
Figure 2 shows the inelastic scattering rates of quasi-

particles in the conduction band I (k) =2ilm[Z(k to
—

qI, )]I, where (I, Is the electron energy relative to the
chemical potential, for parameters corresponding to
a =100 A and a density of n =0.56x106 cm ' in GaAs.
For y=0, below a threshold wave vector k, , there is no
electron-electron scattering (within the RPA) because in

a strictly one-dimensional system conservation of energy
and momentum restricts electron-electron scattering to
an exchange of particles, which is not a randomizing pro-
cess because electrons are indistinguishable [17]. (Our

treatment ignores multiparticle excitations, which will

give rise to a nonzero scattering rate for k (k, ) For
k ) k, , a new scattering channel opens in which electrons
genuinely emit plasmons (as opposed to the virtual
plasmon excitations at the Fermi surface). The inelastic
scattering rate diverges as —(k —k )

'
as one ap-

proaches k, from above, due to the divergence in the den-
sity of states available for scattering right at the plasmon
emission threshold. For y&0, the inelastic scattering rate
remains finite because the plasmon line is broadened.
Furtherm ore, the breaking of translational invariance re-
laxesaxes momentum conservation, permitting inelastic
scattering via single-particle excitations for k (k, . The
inset in Fig. 2 shows the inelastic mean free path,
/=I (k)/I (k), where I is the electron velocity.

In Fig. 3, we show the results of the calculation of the
band-gap renormalization (the sum of Re[Z(k =0, aI

=gk=II)] of conduction-band electrons and valence-band
holes) due to the presence of the conduction electrons.
These results should be useful in explaining photo-
luminescence experiments in quantum wires, even though
we only have electrons in our calculation while the experi-
ments contain both electrons and holes, because we ex-
pect the holes to have a negligible effect on the band-gap
renormalization due to their large mass (and hence their
inability to screen effectively).

Finally, we discuss differences between our model and

the Luttinger model, on which the properties of the Lut-
tinger liquid are based. VVe assume a finite density of

e ectrons in a parabolic energy dispersion, whereas the
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Luttinger model assumes an inftnite density of negative
energy electrons in a completely linear dispersion. We
use the actual Coulomb interaction [18] between elec-
trons for a rectangular well (a reasonably realistic model
for confinement [19]), whereas the Luttinger model as-
sumes an unrealistic short-range potential. On the other
hand, we carry out only the leading-order self-energy cal-
culation in the dynamically screened interaction, whereas
the solution of the Luttinger model includes all vertex
corrections and is exact.

In conclusion, we have shown that in a one-dimensional
system, within the RPA, the Fermi surface disappears in
a clean system because particles at the Fermi surface can
excite low-energy virtual plasmons. When impurity
scattering is included, the Fermi surface reappears be-
cause the low-energy virtual plasmon excitations which
are responsible for the disappearance of the Fermi sur-
face are suppressed by the impurity scattering. In the ab-
sence of impurity scattering, there is a divergence in the
inelastic scattering rate as k approaches the plasma emis-
sion threshold from above. The band-gap renormaliza-
tion is found to be on the order of 10-20 meV for typical
experimental parameters.
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FIG. 3. Total band-gap renormalization [Re(Z;+ Eh) at

k =0, =f1,-o] as a function of electron density in the quantum
wire for various wire widths with parameters corresponding to
Ga As.
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