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New Method to Determine First-Order Transition Points from Finite-Size Data
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We consider a temperature-driven first-order phase transition describing the coexistence of q ordered
low-temperature phases and one disordered high-temperature phase at the infinite-volume transition
temperature To. Analyzing the exponential corrections to the periodic partition function in a box of
volume V, Z~, =P„exp( —Pf„,V), where f„, is the (metastable) free energy of the phase m, we propose
several definitions of a finite-volume transition temperature To(V) which involve only exponential
corrections with respect to To. We test our propositions in the d =2 Potts model for q =5, 8, and 10 by
means of Monte Carlo simulations, using the single-cluster update procedure.
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In the idealized infinite-volume limit, first-order phase
transitions are characterized by discontinuities in the first
derivative of the free energy, i.e., by discontinuities of an

order parameter like internal energy or magnetization.
As a consequence, the specific heat or the susceptibility
show 8-function singularities at the transition. In a finite
volume V, however, the singularities are smoothed out
and the derivative of the order parameter has a finite

peak near the infinite-volume transition point.
If the volume is cubic or nearly cubic, the width of the

peak is proportional to I/V, and the maximum of this

peak is shifted by an amount O(V ') with respect to the
actual infinite-volume transition, where a & 0 depends on

the model and the type of boundary conditions in con-
sideration [1-6].

Another definition of a finite-volume transition point
involves the Binder parameter [7], Bi =I —(E )i/
3(E-)i-, where ( . . )i denotes expectations in the volume

V and F. is the energy. In the infinite-volume limit, B has

a discrete minimum B;„& & at the transition point,
while B=

& away from the transition. In a finite volume

the location of the minimum is again shifted by an

amount proportional to V " if the volume is approxi-
mately cubic [8]. For models describing the coexistence
of finitely many phases at the transition point [9], these
shifts are typically of O(V ') if one considers periodic
boundary conditions. Finite-size scaling using different
volumes may improve the error, but it is always propor-
tional O(V ') for some a (~. But a precise knowledge

of the transition point is often desirable since many quan-
tities of physical interest are just defined at the (a priori
unknown) transition point. It therefore seems desirable
to find definitions of a finite-volume transition point
which involve no power-law corrections at all.

In fact, such a definition has already been given in

Refs. [10] and [11];see also Ref. [12]. It starts from the
observation that the periodic partition function of a mod-

el describing the coexistence of q+1 phases is given by

Z.„(V,P)= ge "-""[I+O(Ve "")],

is equal to the number of stable phases at the inverse
temperature P [13]. Since N(P) has a discrete maximum
at the transition point, it seems natural to define a finite-
volume transition point Pi ti as the point where a suitable
finite-size approximation to N(P), say,

lV(vi, V2, p) = z .,(v, ,p)'
z .,(V.,p)

(3)

is maximal. Here a=v2/Vi. As a result of the bound

(1) (and similar bounds for derivatives; see Refs. [10]
and [11] for details) this definition leads only to exponen
tially small shifts with respect to the infinite-volume tran-
sition point.

The theoretical methods of Refs. [10] and [I I] do not

allow us, however, to calculate the constants in the above

asymptotic bound (I). It is therefore not clear a priori if
the above criterion is of any practical use in the numeri-

cal determination of the transition point [14]. The goal
of this Letter is to test the above criterion in the two-

dimensional q-state Potts model [15], which shows a

(temperature-driven) first-order transition for q & 4. We
will also discuss other definitions of finite-size transition

points which involve only exponentially small systematic
corrections.

For the convenience of the reader we start with a

heuristic derivation of the bound (I ) in the context of a

temperature-driven transition describing the coexistence
of q ordered low-temperature and one disordered high-

temperature phase at the infinite-volume transition tem-

perature TO= I/kttPO, assuming that all string tensions

are nonzero and that all phases have a finite correlation

length at To.
A typical configuration contributing to Z~, then con-

where Lo & ~ is a constant, L is the diameter of V, and

f„,(P) is some sort of metastable free energy of the phase
m. It is equal to the free energy f(P) if m is stable and

strictly larger than f(P) if m is unstable. As a conse-
quence,

/V(P) = lirn Z „(V,P. )e@ ~"
i oo
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sists of regions V„„m=0, . . . , q, corresponding to small

perturbations of the disordered (m =0) or ordered phases
(m =I, . . . , q), and "domain walls" separating these re-

gions. We distinguish two types of configurations: those
with domain walls which wind around the torus [the cor-
responding sum will be denoted by Zt„,„„~(v,p)], and

those which do not contain such domain walls. The sum

over the second type of configuration may then be written
as a sum of q+ I terms Z„,(V,p), each describing a gas
of excitations immersed in the mth phase, and

qz, (v,p) =z,„„„„(v,p)+ g z„,(v,p).
m 0

(4)

Assuming that domain walls W of size
~
W~ are sup-

pressed like e ' (which is plausible as long as all

string tensions are nonzero) one may bound Z,„„„,~ by
e ~ ~ O(Ve "),where L is the diameter of V and the
preexponential factor V in the above bound counts for the
diA'erent possibilities to locate a domain wall in V.

In order to define f„,(p) we follow an idea originally
appearing in Ref. [16] and introduce truncated partition
functions Z„",""'(V,p) where all configurations containing
domain walls with a diameter larger than the size

L, "' (P) of a. critical droplet in the corresponding droplet
model are suppressed. Since L, "' (p) =ee if .m is stable,
while L, "' (p)-~p —

po~
' if m is unstable, the corre-

sponding free energies f„,(P) are equal to f(P) if m is

stable and strictly larger than f(p) if m is unstable.
Let us now assume that ~p

—
po~ is so small that the

diameter L of V is smaller than L, "' (p) for . all

phases m [in the context considered here, where ~P
—

Pp~~ O(V ')«L ', this is no restriction at all, since
L;(p) —~p

—
pp~ ']. Then all phases of the model

behave as if they were stable (in the sense that large
domain walls are suppressed), and Z, (V,P)
=Z,'„'""'(V,P). Since Z„, is defined on a torus, and since
a torus has neither corners, edges, nor boundaries,
lnZ„, (V,P) contains no surface corrections and

I lnZ„, (V,P) +Pf„,(P) V~ may be bounded by
O(Ve '~ ), where L "' is of the order of the correla-
tion length of the phase m. Combining this bound with
the above bound for Z«»„~ we get (I), provided

p —pp~L & I [actually, the bound (I) remains true for

p p—o~ L & I as well; see Ref. [10] for details).
At this point we want to stress that the bound (I) is

only a bound and does not imply that the exponential
corrections do actually behave like Ve . As an illus-

—L/I p

tration we consider the leading configurations contribut-

ing to Zt„„„„l in d=2. They consist of two parallel
domain walls in one of the coordinate directions, both
closed by periodicity. If we neglect the interaction be-

tween them, each of them should behave like a closed
random walk, leading to an eA'ective weight (L
&L '~ e ") -Le ", where the factor L counts for
the translation invariance perpendicular to the chosen
coordinate direction.

Unfortunately, the numerical determination of Ppyt re-

quires simulations on two diAerent lattices. We therefore
looked for another definition of a finite-size transition

point which requires data from one lattice only. It is

based on the fact that the partition function of a statisti-
cal system may be written as

Z= g e l" QN-(E)e I'F--
COnllg

(s)

where N(E) is the number of configurations with the en-

ergy E. I n practice, by recording energy histograms, one
measures the closely related probability distribution

P~(E) =Z 'N(E)e ~, which, around a first-order
transition, has the typical double-peak form displayed for
three characteristic temperatures in Fig. 1. At the
infinite-volume transition point all free energies f„,(p)
are equal, so that

Z„, V, =qZ0 V, (6)
at= i

apart from exponentially small corrections. A natural
definition of a finite-volume transition point Pn is thus
the point where the ratio of the total weight of the or-
dered phases to the weight of the disordered phase ap-
proaches q,

R(VP) = g Pp(E) g Pp(E)—:Wp/Wz =q .
I' (Ep E~ Ep

(7)
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FIG. 1. The typical double-peak form of the probability distribution Ps(E) at (a) Po, (b) Pr, , and (c) Pa, .
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Here Eo is defined as the energy at the minimum between
the two peaks at the temperature where both peaks of
Ptt(E) have equal height. Clearly, other definitions of Ep
would be reasonable as well, for example, the internal en-

ergy at the temperature where the specific heat is maxi-
mal. Since it is expected that the relative height of the

g .(d —I

minimum between the two peaks decreases like e
as I ~, all these definitions do in fact only differ by
exponentially small errors. It is therefore a matter of
practical convenience to choose Eo. Note that in (7) we

have assumed that the number of ordered phases, q, is

known by general arguments. If this is not the case, one

may use the crossing points pa ta satisfying R(V~,
pa tiv) =R(Vz, pa ta ) as estimates for po. This, of
course, requires again the simulation on two lattices.

Clearly, all these considerations apply to field-driven
first-order transitions as well. The point Pi t i, e.g. ,

should then be replaced by the position hzyz of the max-
imum of the ratio (3) as a function of the field h. And

instead of energy histograms one should use magnetiza-
tion histograms.

We have tested our propositions by Monte Carlo simu-

lations of the two-dimensional q-state Potts model with

q =5, 8, and IO [I5] on square lattices with the periodic
boundary condition. The Potts models for q ) 4 are ex-
actly known [I 5, 17] to show a temperature-driven first-

order phase transition at po=ln(l+ Jq). To update the

spin configurations we have used the cluster algorithm
[181 in its single-cluster variant [19] which is very suc-
cessful in reducing critical slowing down near continuous
phase transitions. At the first-order transitions con-
sidered here, however, the overall gain in CPU time as
compared to the standard Metropolis algorithm turned
out to be only quite modest [20].

For each q and lattice size, we have first performed one
relatively short simulation at some p near the transition
point [2I] and recorded the energy histogram P&(E). Us-

ing the relation
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plying Eq. (8), we have combined the three histograms at
fixed q and V to a single, optimized histogram [23], which
was then used for all further analyses.

In Figs. 2(a)-2(c) we plot the positions of the specific-
heat maximum and Binder-parameter minimum for q
=5, 8, and 10 and various lattice sizes. Also shown are
the infinite-volume transition points and the leading IlV
corrections, which are both exactly known for 2D Potts

Pt(E) =e '" " Ptt(E) ge ~ ~ Pp(E),
E

(8)

0.71
this allows us in principle to calculate the energy distribu-
tion and hence expectation values at any inverse ternpera-
ture p [22]. In practice, statistical errors limit the actual
range of P to ~P P~E —I, but this is st—ill wide enough to

get an estimate of the specific-heat maximum p& r
and

the Binder-parameter minimum ptt, . We have then per-
formed three rather long simulations at Po, P&, and

Ptt, , and again recorded the energy histograms. Their
typical shapes can be inspected in Fig. 1 for the case q =8
and V=57x57. For nontrivial models with unknown po
one can use Eq. (7) to get a first rough estimate of the
transition point from the short run. The run time t,„„of
the long simulations is of the order (3-5) && IO, where

t,„„is defined (in units comparable to Metropolis sweeps)
as ((C)lV) && (the number of cluster steps), with (C)
denoting the average cluster size. Finally, basically ap-
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FIG. 2. The finite-volume transition points pI (y (~) and pg
(G), resulting from the new criteria proposed in this Letter. For
comparison, we also show P& (~) and PB (0) The solid

straight lines are the exactly known I/V corrections correspond-

ing to ~ and 0, and the dashed, almost interpolating curves

show exponential fits to the data. The long-dashed horizontal

lines indicate the exact transition point po.
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models. In nontrivial models the infinite-volume transi-
tion point would have to be estimated from linear extra-
polations in I/V. As can be seen in Fig. 2, in particular
for weak first-order phase transitions (small q), this can
be quite misleading. Note that the next correction term
a:(I/V) is extremely small (at least for 2D Potts mod-
els) and does not improve the agreement with the data.
Rather, it even goes in the wrong direction. In view of
our earlier discussion of exponential corrections this is not—L/L psurprising at all. In fact, also allowing terms ~e
besides the I/V corrections, and performing fits to the
data, we find the interpolating dashed curves in Fig. 2.

Knowing the (optimized) probability distributions
P&(E), the positions pviv of the maxima of N(V~, Vq, p)
in Eq. (3) are also readily determined. We have chosen
V~ and V2 to ensure that a= Vs/Vi is roughly constant
(=1.6). As is demonstrated in Fig. 2, the resulting
porn«pviv approach po quite rapidly from below, thus

confirming the theoretical expectations.
Our second criterion in Eq. (7) is only a little more la-

borious to implement. First, using relation (8) we vary
the temperature until both peaks have equal height and
then determine the energy Eo at the minimum between
them. A good starting point for this procedure is pc,
(see Fig. I). Again using (8), we finally adjust p until
R(V,Ptv) =q. In Fig. 2 we see that the transition points
ptv are even closer to po than the corresponding points
pviv. Notice that on the larger lattices, in order to disen-
tangle the small systematic deviations of the order
~ptv

—
po~ = l0 from statistical errors, we would need

much higher statistics.
In summary, we have proposed and successfully tested

two simple criteria for locating first-order transition
points in Monte Carlo simulations on finite periodic lat-
tices that have only exponentially small corrections with
respect to the infinite-volume limit.
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