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We present a rigorous description of finite-size effects for a large class of models with an asymmetric

first-order transition, assuming that all phases contributing to the transition have a finite correlation

length. If the model describes the coexistence of two phases, it is shown that, at su%ciently low temper-

atures, the shift of the transition point due to finite-size effects in a volume L" with periodic boundary

conditions is O(L -'), in contrast to certain claims in the literature. We also discuss different ways to

determine the transition point from finite-size data, which involve only exponentially small systematic er-

rors in L.

PACS numbers: 64.60.—i, 05.50.+q

where m is the (infinite volume) spontaneous bulk mag-

netization per lattice site and p is the inverse tempera-
ture, P=llkT. This yields the magnetization (under
periodic boundary conditions)

m~„(T,h;L) = m tanh(PhmV), (2)

which is rounded on the scale L
The situation is less clear for models with asymmetric

(field- or temperature-driven) transitions. An attempt to
understand the finite-size scaling for such models was

made by approximating the equilibrium probability dis-

tribution Pt (s) of an order parameter s [for Ising-like

systems s =(I/V)+cr; is the magnetization per lattice
site] by a sum of two Gaussian distributions. Unfor-

tunately, this approach leads to a controversy [3-5]. Two
different results are obtained if, on one hand [4], the rela-

tive height of these Gaussians is chosen in such a way
that the area under both peaks of PI is equal at the tran-
sition point h =h, (p), or if, on the other hand [5], it is

I irst-order phase transitions are characterized by
discontinuities in the first derivatives of the free energy in

the idealized infinite-volume limit. However, experimen-
tal or simulation data are taken from finite samples,
where the discontinuity is smoothed. As a result, it is a
priori not clear where to locate the transition point, and
sometimes even the order of the transition is difficult to
distinguish. A clear understanding of the details of the
finite-size rounding is therefore important when interpret-
ing experimental or simulation data.

A typical situation in Monte Carlo simulations is to
consider a cubic lattice system of volume V=L with

periodic boundary conditions [1]. For a symmetric first-

order transition, say an Ising magnet, the finite-size scal-

ing is well understood [2,3]: The dependence of the parti-
tion function on an ordering field h is well approximated

by the sum

Phi)I V + —Phnl V

chosen in such a way that both peaks of PI have equal
height at the transition point [6,7].

Our aim in this Letter is not only to resolve this contro-
versy, but in general, to put the theory of finite-size
effects on a rigorous footing. Restricting ourselves, for
the moment, to the case of field-driven transitions, we will

consider the magnetization

m .,(h,L)=, lnz „(h,L),L d
pLd dh

and the susceptibility

dm .,(h, L)
JA

(3)

(4)

where Z~, (h, L) is the partition function in a volume
V=L with periodic boundary conditions. Our results
will cover a large class of models [8], including perturbed
Ising models at low temperatures, large-N lattice Higgs
models, lattice P(p)d and continuum P(p)2 models, and

more generally, all those models which can be treated by
the Pirogov-Sinai theory [9]. One important class of
models that do not have a contour representation and to
which neither the Pirogov-Sinai theory, nor our results

apply, are Heisenberg-like systems with continuous sym-

metries.
The theory presented here starts from the fact, proven

in Ref. [8], that the partition function of a model describ-

ing the coexistence of N phases at h =h, is, at low tem-
peratures, very well approximated [10] by

Zt. ,(h, L) = g exP[ fv(h)PL j, — (5)

where fv(h) is some sort of "metastable free energy" of
the phase q. The quantity f„(h) is equal to the free ener-

gy f(h) of the model whenever q is stable, and

fv(h) & f(h) if q is unstable. While it is not expected
that f„(h) can be chosen as an analytic function [I I], it

still may be introduced in such a way that it is differ-
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entiable [in Ref. [8] the differentiability of the fourth or-
der is needed and, indeed, it is shown that fv(h) may be
chosen to be C ].

There are two interrelated problems concerning the ap-
proximation (5). One is the meaning of the words "well

approximated, " and the second is a definition of metasta-
ble free energies fq(h), q = I, . . . , N. Without entering
into technicalities, we describe here only the main ideas.
First, representing the configurations in a geometrical
fashion as regions of ground states separated by collec-
tions of energetically unfavorable contours [12], one
expresses Z~, (h, L) as a partition function of a "contour
model. " If we disregard all configurations with contours
wrapped around the torus, thus committing an error of
the order e '~", we get Z~, (h, L) as a sum of N terms,
Z„(h,L), each describing a "gas of excitations" im-

mersed in the qth phase. While all excitations about a
stable phase are exponentially damped, excitations about
an unstable phase which are larger than a certain critical
size L,. (h) —I/(~h —h&~) are in fact favorable if they
introduce a transition from an unstable into a stable
phase [13]. Following an idea originally appearing in

Ref. [14],we now introduce a modified partition function,
Z~"""'(h,L ), where these excitations are artificially
suppressed (see Ref. [8] for details). Its logarithm may
then be analyzed, at low temperatures, by a convergent
expansion and one may show that the corresponding free
energy fq(h) is equal to the free energy f(h) of the full

model if q is stable, while f„(h) f(h) ~ co—nst~h —h,
~

if

q is unstable.
Let us now assume that ~h

—
h& ~L && 1. Then L

& L, (h ), all excitations are exponentially damped,
Z„(h,L) =Zq'""'(h, L), and its logarithm may be ana-
lyzed by a convergent expansion whether q is stable or

fq(h) f(h&)+mv(h h&)+ & gv(h h&)

+O((h —h, ) ') . (6)

As a consequence (see Ref. [8]),one can prove that

unstable. Since Z„(h,L) is defined in a periodic box, the
expansion for its logarithm contains no surface terms and

Z„(h, L) is equal to exp[ fq—(h)PL"j, except for an
exponentially small error exp[ f„—(h)PL }O(e '~').
This justifies the approximation (5) in the region
[15]

~
h —h, }L && I, with an explicit error bound

exp{ f„—(h)PL }O(e '~'). Note that the restriction
}h —h, }L« I is actually no restriction in the context con-
sidered here, since the rounding of the infinite-volume

jump takes place in the region where ~h
—

h&~ =O(L )
&(I '. Let us mention that the use of cluster expan-
sions requires low temperatures. For a model like the Is-
ing model it means that our proofs are valid only for tem-
peratures up to about half the critical temperature, even

though we believe that the approximation (5) holds for
all temperatures below the critical temperature (with the
constant cP in the above error bound replaced by a con-
stant of the order 1/g, where g is the correlation length).

Once the approximation (5) is justified, one can use it

to evaluate the finite-size behavior of m~, (h, L). Re-
stricting ourselves to the coexistence of two phases
(N =2), one of them, say +, being stable for h ~ h, and
the other one for h ~ h„we introduce m~„(h) and

g~„(h) as the L &x& limit of (3) and (4), respectively,
and define mp=(m~+m-)/2, m =(m+ —m-)/2, with
m ~ =mp„, (h& ~0); g, gp, g+, and g — are defined in a
similar way. Expanding f„(h) around h =h„and using
the fact that f„(h) =f(h) if h is stable to calculate the
coeScients, we obtain

m~, (h, L) =mp+gp(h —h, )+ [m+g(h —h&)]tanh[L P[m(h —h, )+ —,
'

g(h —h, ) ]j+R(h,L),
where

(7)

~R(h, L)}~ e ' +K&(h —h, ) (8)

for some constants bp&0, K~ «x&. Notice that (7) is

equivalent to formula (25) of Ref. [4] and thus offers its
rigorous justification, while it disagrees with the corre-
sponding formula of Ref. [51.

Concerning the shift of the transition due to finite-size
effects, we will consider several definitions of the finite-
volume transition point: (a) The point h „„(L)where the.
susceptibility g~„(h,L) is maximal, (b) the point hp(L)
where m~, (h, L) =mp, and (c) the point h (L)&that is
defined in the following way. Consider the quantity

N(h) = lim Z~&(h, L)e~ (9)
~ oo

It turns out that the limit JV(h) exists and that it equals
the number of stable phases [16] [that means N(h) =2
for h=h, and N(h)=1 for h&h&]. Indeed, this can
be immediately seen from (5) and the property that

(10)

attains its maximum. By an explicit calculation, it is easy
to see that h&(L) may be equivalently defined as the point
where

m~„(h, L) =m~, (h, 2L) .

Using (7) one may easily calculate h „„(L),yielding
the shift

h „„(L)=h,+(3g/2P m )L . d+O(L d). (]2)

On the other hand, ~m~, (h&, L) —
mp~ ~ O(e ' ) and

f„(h)~ f(h), with the equality if and only if the phase q
is stable. Since the number of stable phases discontinu-
ously increases at the coexistence point, it seems natural
to define h, (L) as that point where a suitable finite-
volume approximation to N(h), say

N h, L
Z, (h, L)'
Z~, (h, 2L)
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l N (h, ) —N(h„L ) l
(O(e ' ). One therefore should

expect that the values hp(L) and h, (L) differ from h,
only by an exponentially small error. Indeed, such a
statement has been proven in Ref. [8]. While hp(L) is

difficult to determine from simulation data because the
value mp is not known a priori, h, (L) can be easily deter-
mined, either using the available methods [17] to calcu-
late partition functions, or using the equivalent definition
(11). We therefore propose h, (L) as a new way to deter-
mine h, from finite-size data [18].

For the sake of concreteness, we finally state our results

in the form of two theorems. As an explicit model we
take a perturbed Ising model with Hamiltonian

H= o;a, +QJ Q o;+hgo;,
(t —) =i i 6A

(i 3)

where ACZ are finite sets of lattice sites, J~ =0 if
diam' & R for some fixed R, and sup~i J~l ( e for a
sufficiently small e. We then have the following two
theorems [8].

Theorem I.—For some constants Ko, K~, and bo and
temperatures low enough, we have the formula (7) with

the bound (8), and further (i)

m —(h) for h (h, ,

m~„(h) = lim m~„(h, L) =~ —,
' [m-(h)+m~(h)] for h =h, ,im

m+(h) for h & h, ,

(i4)

Theorem 2.—For a fixed constant 6' and sufficiently
low temperatures, one has (i)

h„,„. „(L)=h, +(3g/2P m )L ~+O(L '); (i 6)

(ii) in the interval [h, —B,hi+8], there exists a unique

hp(L) for which m~ (h, L) =mp, and for this hp(L) one

has hp(L) =h, +O(e ' ); and (iii)

h, (L) =h, +O(e "'). (i 7)

We conclude with three remarks.
(1) The formula (5) is valid for N & 2 as well. As a

consequence, one may analyze the finite-size behavior of
the magnetization for the coexistence of more than two

phases as well (see Sec. 5 of Ref. [8]). Even though the
rigorous statement is proven only for the class of models
mentioned above and at low temperatures, we believe that
it is valid whenever a finite number of phases having

finite correlation length take part in the transition. Thus
we are led to the following conjecture:

Consider a first-order transition with driving parameter
t and with the order parameter X(t) = —df/dt jumping
from I—to I+ at t =0. Assume that N] phases coexist
for t (0 and N~ for t & 0, all of them coexisting at t =0
and all of them having finite correlation length. Then the
finite-volume order parameter, under periodic boundary
conditions, should scale like

where m+ (h) = —df+(h)/dh, . and [19] (ii)

Im~„(h, L) —
mp, ,(h) I

( e "+Kpexp[ —bplh —hi IL'j .

(is)

(2) Note that our work does not cover the case of long
cylinders (not satisfying the condition above) that show a
diff'erent finite-size scaling. See the Privman and Fisher
paper [2] for a discussion of the case where two phases
are related by a symmetry, and Ref. [20] for a rigorous
version discussing the general case of N phases not neces-
sarily related by a symmetry.

(3) The methods presented here do not depend on the
fact that the phase transition is field driven. In fact, they
have been applied to the q-state Potts model [21] which

undergoes a temperature-driven first-order transition if q
is large enough (for d=2, q must be larger than 4). It
has been shown [22] for sufficiently large [23] q (thus
verifying in this case the above conjecture) that the mean

energy can be approximated by

—[ln(q)/2E]L '+O(L ), (20)

while the inverse temperature p, (L) for which N(p, L) is

maximal difTers from P, only by an exponentially small

error O(q "'), where b & 0 is a constant [24]. Consider-

ing also the inverse temperature Py(L) where the so-

called Binder parameter attains its minimum, one can
show that its shift is again of the order L, but with the
coefficient differing from that in (22). Calculating the
coefficients in the particular case when d=2 and q =10,
we get for the shifts of temperatures

Ep, ,(P, L) = Ep+Etanh[E(P —P, )Ld+ —,
'

Inqj . (19)

As a consequence, the inverse temperature p„„„(L), .

where the slope of E~,(p, L ) is maximal is shifted by

X +Xi X —X+ X —X+ Ni+ tanh t V +ln
2 2 2 N2

(18)

k T~„„(L) =0.7012+ 1.63L . -+O(L ),

kTy(L) =0.7012+2.39L '-+O(L ),
(2i)

if tl Vl stays constant and t goes to 0. The volume V

should be nearly cubic (e.g. , a parallelepiped with sides L,
such that l Vl exp[ —r minL;j ( 1).

in very good agreement with the numerical data from
Refs. [5] and [6].
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