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Observations of Localized Structures in Nonlinear Lattices: Domain Walls and Kinks
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Steady-state domain walls and kinks have been observed in one-dimensional nonlinear lattices that are
damped and parametrically driven. These states are localized robust transition regions between two ex-
tended standing-wave domains of definite wave number. The observations are made in an experimental
lattice of coupled pendulums and in simplified numerical models. A nonlinear Schrodinger theory is
developed for kinks in the upper cutoff mode. There is currently no theory for the domain walls and
noncutoff kinks, which are fundamentally new localized structures.

PACS numbers: 63.20.Pw, 46.10.+z, 63.20.Ry

We have found that nonlinear vibratory lattices can
have a wealth of nonpropagating self-localized structures
[1]. Here we report the observation of domain walls
which connect standing-wave regions of different wave
number (Fig. 1), and kinks which connect standing-wave
regions of the same wave number with a spatial phase
mismatch (Figs. 2 and 3). The robust nature of these
states is evident in the kinks of Fig. 2, which are smooth
envelopes of a mode that is nonuniform due to lattice ir-
regularities. As with the nonlinear Schrédinger (NLS),
Korteweg-de Vries (KdV), sine-Gordon, and Toda soli-
tons, these localized structures represent a spontaneous
breaking of the translational invariance that characterizes
the underlying equations of motion. In addition, the
domain wall breaks parity. We have found that kinks in
the upper cutoff mode (in which each oscillator is 180°
out of phase with its immediate neighbors) are approxi-
mately described by an NLS equation, whereas domain
walls and noncutoff kinks are not described by this or the
KdV, sine-Gordon, or Toda equations. A theoretical un-
derstanding of the new structures may lead to new gener-
ic integrable equations, and thus to fundamentally new
solitons.

The observations of domain walls and kinks in an actu-
al lattice and various simplified numerical models indi-
cate that these structures are general phenomena which
can occur in many other lattices. For example, upper
cutoff kinks should be observable in the motion of the
separatrices in a linear array of vortices [2]. Further-
more, domain walls and noncutoff kinks may exist as
nonpropagating or propagating structures in continua, as
is the case with lower cutoff [3] and similar [4] kinks.
The considerations in this article are restricted to one
space dimension. However, the robust nature of our ob-
servations suggests searching for generalizations of these
phenomena in higher dimensions.

An underlying theme here is the high degree of com-
plexity of the modal structure of nonlinear mesoscopic
systems. For example, there exist more physically dis-
tinct modes than are enumerated by the degrees of free-
dom of the system. One can gain appreciation of this by
our observation of a bound state of a domain wall and a
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FIG. 1. Domain wall between the upper cutoff and
wavelength-four modes: (a) experimental horizontal amplitudes
of the oscillators; (b) numerical amplitudes; and diagrammatic
representations of peak-to-peak amplitudes and phases of a
highly localized (c) domain wall and of a (d) bound state of a
domain wall and kink. In (a), the drive frequency is 3.68 Hz
and the peak drive amplitude is 0.52 mm. In (b), the dimen-
sionless drive parameters are w/wo=1.07 and n/wd=0.10.
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FIG. 2. Experimental data of (a) the upper cutoff mode, (b)
kinks in this mode, (c) the values of the latter divided by those
of the former and then scaled to the original average value, and
(d) diagrammatic representation of a highly localized antisym-
metric kink in a uniform lattice. The curves are hyperbolic
tangent best fits. The drive frequency is 3.95 Hz for the smaller
amplitude data, and 3.68 Hz for the larger amplitude data.
The peak drive amplitude is 0.80 mm in both cases.

kink [Fig. 1(d)].

The apparatus is remarkably simple. It is a lattice of
35 pendulums supported by a rod that is attached to a
vertical-shake table (Fig. 4). Each pendulum consists of
strong thread in a shape similar to a V with a brass cylin-
drical bob at the bottom. The V’s are constructed to
overlap, where knots are tied to ensure the coupling. The
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FIG. 3. Symmetric kink in the wavelength-four mode: (a)
numerical amplitudes and (b) diagrammatic representation of
the highly localized state. In (a), the dimensionless drive pa-
rameters are w/wo=1.07 and n/wé =0.09.

phenomena reported here have also been observed in a
similar lattice made simply of kite string and machine
nuts. To minimize end effects, we clamp each outer seg-
ment of thread at the location appropriate for the mode
of interest. Although the range of amplitudes in the ap-
paratus is limited compared to sine-Gordon lattices [5],
this has no essential effect upon the localized structures
reported here. For large-amplitude motion in our lattice,
the pendulum bobs twist substantially. That the localized
structures continue to exist under this condition is an in-
dication of their robustness.

One means of obtaining a domain wall in the lattice is
to begin with a pure upper cutoff mode by driving at ap-
proximately twice [6] the linear frequency of the mode.
Next, lower the drive frequency to a value near twice the
linear frequency of the wavelength-four mode, and then
eliminate the motion in part of the lattice by touching the
bobs with a meter stick. The wavelength-four mode will
then develop and eventually reach a steady-state coex-
istence with the upper cutoff mode. Steady-state ampli-
tude data are obtained from digitized videotape. The

S~ shake table

FIG. 4. Pendulum lattice apparatus. The motion is approxi-
mately perpendicular to the lattice. The values of the parame-
ters are L =84 cm,d=19cm,a=25cm,and m=13 g.
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video camera is directed horizontally at a mirror inclined
at 45° and located between the shake table and lattice.
Figure 1(a) shows the displacements of the pendulums
near a turning point of the motion. We have also ob-
served domain walls between other modes.

To gain insight into the generality of the phenomena,
we have carried out numerical studies of a highly ideal-
ized version of the actual lattice. In this model the
motion of each mass is one dimensional, the coupling
purely linear, and the nonlinearity only cubic. None of
these assumptions holds for the actual lattice. With the
inclusion of linear damping and parametric drive of the
external linear potential wells, the equation of motion of
the model system is

é.n _('2(911+I _2en+9n—l)+ﬁén
+lwd+ncosQwt)10,=ab, ()

where dots denote time differentiation, 6, is the displace-
ment of the nth oscillator, wy is the linear frequency of an
uncoupled oscillator, n is the drive amplitude, 2w is the
drive frequency, B is the damping parameter, and clisa
measure of the coupling strength. The nonlinear
coefficient @ is wd/6 if (1) is to approximate a pendulum
lattice. We choose a cubic nonlinearity because it is the
simplest, and because we wish to show that the sin(8),
which occurs in the equation of motion of the actual lat-
tice, plays no essential role in the existence of the local-
ized states. Furthermore, the cubic nonlinearity is advan-
tageous because we can generalize the numerical model
by allowing the coefficient a to be positive (softening sys-
tem), zero (linear system), or negative (hardening sys-
tem). By “softening” or “hardening” is meant that the
frequency of a free-standing wave decreases or increases,
respectively, at greater amplitudes. By scaling time and
displacement, we can normalize wo and the magnitude of
a in (1). Unless otherwise specified, the results presented
here are for a softening system (a=+1) with ¢>=0.1
and $=0.03. The value of ¢’ roughly equals the actual
value [7] in the experimental lattice, while the value of 8
is an order of magnitude greater than the actual value.
This greater value was chosen to more quickly eliminate
transients, and has no essential effect upon the localized
states. We find that periodic boundary conditions yield
essentially the same results as “‘reflecting’” boundary con-
ditions, in which ghost oscillators next to the ends of the
lattice are specified to have the same instantaneous dis-
placements as the oscillators one wavelength from the
ghost oscillators. Our domain-wall investigations were
performed with these boundary conditions, because in
this case a single domain wall can occur in the lattice. If
the number of oscillators does not exceed several hun-
dred, the numerical solution of (1) can be handled on a
fast personal computer with a simple finite-difference
method (e.g., fourth-order Runge-Kutta method). The
stability of all states was checked by imposing random
perturbations of the displacements near a turning point.
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Numerical domain walls [Fig. 1(b)] are very similar to
experimental ones, and have also been observed between
a variety of modes. Furthermore, we have numerically
simulated domain walls in (1) with a hardening non-
linearity (a= —1) and with a quadratic rather than a cu-
bic nonlinearity, as well as in damped parametrically
driven lattice generalizations of the sine-Gordon and
sinh-Gordon equations.

Of the localized structures reported here, the easiest to
observe experimentally are upper cutoff kinks (Fig. 2),
which are localized transition regions between two upper
cutoff domains that are mismatched by 180°. If the pen-
dulums are initially at rest and the system is driven at
twice the linear upper cutoff frequency, a pure upper
cutoff mode seldom develops. Instead, one or more kinks
occur. When two kinks are brought near each other by
hand, they attract and eventually annihilate, in contrast
to the surface-wave case in which there is strong repul-
sion [3]. We have numerically observed antisymmetric
[Fig. 2(d)] and symmetric kinks [8]. Typical experimen-
tal upper cutoff mode and kink data are shown in Figs.
2(a) and 2(b), respectively. The kink locations are
different because lattice nonuniformities caused the kink
to migrate as the response amplitude was increased. The
uncertainty of the measurements is negligible (0.3
mm); the lack of smoothness of the data is a result of
nonuniformities of the lattice. The low amplitude data in
Fig. 2(a) show a = 30% peak variation, even though the
peak nonuniformity of the lattice dimensions is only
+ 3%. The large enhancement of the fractional variation
in the response is suggestive of a standing-wave analog of
Anderson localization [9]. That the large amplitude data
in Fig. 2(a) show only a small amount of variation is indi-
cative of strong nonlinearity restoring the translational
invariance broken by Anderson localization [10]. Figure
2(c) shows the results of dividing the kink data by the
upper cutoff mode data, and then scaling the amplitudes
to the average of the original values. The data are
smoothed by this process, and are fitted remarkably well
by a hyperbolic tangent function. Numerical studies
show that the width of this function is not independent of
the location of the kink. The hyperbolic tangent is a
characteristic solution of the nonlinear Schrodinger
(NLS) theory for a uniform (translationally invariant)
lattice, as we now show.

We begin with (1) and consider an amplitude modula-
tion of the upper cutoff mode:

0, (1) =(—=1)" A, )e +cc.+ - -, )

where A(x,t) is a continuous differentiable complex
function of its arguments, @ deviates a small amount
from the linear frequency w; =(wd+4c?)"? of the upper
cutoff mode, the lattice spacing is unity, and the ellipsis
denotes higher harmonics. When (2) is substituted into
(1), and A is assumed to be weakly nonlinear and slowly
varying in space and time, it can be shown that A obeys
an NLS equation if the drive and dissipation are also
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weak [7]:
2iwA, +c A+ (0 — 0’ —iwp) A—nA*/2
=3a|A|2A. ()

This equation is ubiquitous in the description of modula-
tions of damped parametrically driven cutoff modes. It
arises, for example, in a mass-and-spring lattice with non-
linear springs. The equation is integrable in the case of
no drive and dissipation [11]. We consider steady-state
solutions of the form A(x,r) =A(x)e”®, where A4 and &
are real. The stable single-kink solution of (3), which ex-
ists for a softening nonlinearity (a > 0), is [3]

AG) =(y/3a) tanh[(y/2) "2 (x — x¢)/c] , )

and tan(286) =wp/v, where y=wi—ow’+v, v=(3%/4
—wzﬂz)'/z, and the location x¢ of the node is arbitrary.
The approximate theoretical expression (4) agrees very
well with numerical antisymmetric kink data based on
(1), even when the amplitudes appear to be neither weak-
ly nonlinear nor slowly varying. For example, the devia-
tion is only about 1% when 6, =0.80 in the uniform re-
gion and A8,/An=0.75 in the kink region.

Kinks are not restricted to cutoff modes, but can also
exist in modes in the band. Figure 3(a) shows numerical
data of a symmetric kink in the wavelength-four mode.
This kink has also been observed in the actual pendulum
lattice. There is a 90° spatial phase mismatch between
the domains on either side of the kink. The mismatch is
easily identified when the kink is highly localized [Fig.
3(b)]. We have also observed an antisymmetric kink cor-
responding to this mismatch, as well as symmetric and
antisymmetric kinks corresponding to the two other possi-
ble mismatches (—90° and 180°) [8]. Noncutoff kinks
have been observed in a variety of modes, and have been
numerically simulated in the lattices mentioned above. In
fact, our experience with the many different numerical
models leads us to claim that all of the structures report-
ed here can exist in any lattice whose description has the
form of (1) with any nonlinear potential, provided that
the associated extended mode (or modes) is stable. This
disallows hardening upper cutoff and softening lower
cutoff modes, which exhibit the Benjamin-Feir instability

and evolve into localized breather states [7].

As in the case of domain walls, there currently exists
no theory for noncutoff standing-wave kinks. The above
analytical approach, which is successful in the case of
cutoff modes, is not sufficiently general to describe the
structures in noncutoff modes. Finally, we reiterate our
observation that upper cutoff kinks are smooth envelopes
of eigenmodes that can be highly nonuniform. That these
envelopes have the same functional form as solutions to
the NLS equation for a translationally invariant lattice is
also not understood.
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