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Long-time numerical solutions of a low-dimensional model of the reduced MHD equations show that,
when this system is driven quasistatically, the response is punctuated by impulsive events. The statistics
of these events indicate a Poisson process; the frequency of these events scales as AEx ', where AEy is

the energy released in one event.
PACS numbers: 52.30.—q, 52.35.—g, 96.60.Rd

When a nonlinear system is driven by external forces
quasistatically, i.e., at a rate slower than the transit time
of a signal across the system, t=/[/v; (I is the typical
scale length and vy is the signal velocity), the response is
also expected to be quasistatic. We show in this Letter,
through a specific example, that this conclusion is not al-
ways valid. During the process of quasistatic evolution
the system seeks to occupy a state of quasiequilibrium
with minimum potential energy. If it so happens at some
stage that the second variation of the potential energy [1]
vanishes, i.e., 5(2)W=0, the local equilibrium is lost and
the system drops to a neighboring potential minimum if
the third-order potential energy 6 W <0. The time
scale of this transition is determined by the internal dy-
namics of the system and not by the external forces.
Thus, the general response of a nonlinear system is pre-
dicted to be periods of quasistatic evolution punctuated
by abrupt impulsive events [2] whose time scale is of or-
der 7. We investigate here the statistics of such abrupt
impulsive events for a system with many degrees of free-
dom.

Solar flares [3] are an example of sporadically occur-
ring impulsive events in nature. These occur on many
scales of energy output ranging through microflares [4]
and nanoflares [5]. Our present understanding postulates
that the magnetic energy stored in coronal magnetic loops
is released abruptly during a flare in the form of x rays,
energetic particles, ejected mass, etc. Since the magnet-
ic-field lines of a coronal loop are anchored in the dense
photosphere the turbulent motions of the photosphere
continually twist and untwist the field lines, thereby stor-
ing magnetic energy in the loop on average. In what fol-
lows, we develop a model that, in particular, should be
applicable to microflares and nanoflares. The con-
clusions, however, may be more general and applicable to
other systems where energy is stored on the long time
scale but released in rapid events.

By ignoring curvature and gravitational stratification a
coronal loop of length L can be mapped to a slab-shaped
domain bounded with conducting planes at z=0 and
z=L representing the photosphere [6]. The initial mag-
netic field in the loop is uniform, B=Byz. The two-
dimensional velocity field at z =0 and z =L is specified.
This motion is much slower than t =L/v4, where v is
the Alfvén velocity in the loop. The transverse dimension
of the loop a < L. In this limit the magnetohydrodynam-
ic equations describing the coronal plasma can be approx-

imated by the so-called “reduced MHD” set of equations
[7] that deal with vorticity @ =Z-VXv, and the vector
potential A =A-Z:

80/0t+v, -V, 0=08J/0z+B,-V,J+wWiq, )
0A4/0t+v,-V,A=—09¢/0z+nViA, )

with v, =ZxVg, B, =VAxZ, Q@ =Vip and J=—ViA
Equations (1) and (2) are expressed in units of 7, L, and
a/2r. The photospheric drive is introduced by prescrib-
ing Q(x.,0,z=0)=/%x,,1), Qlxy,t,z=1)=f"(x,1)
to be randomly generated fields with Gaussian statistics
and specified correlation time 7 and root-mean-squared
amplitudes 75 '. This forcing is maintained quasistatic
by demanding tp,t¢>> 1.

The set of reduced MHD equations (1) and (2) have
been solved numerically and shown to lead to equilibria
of increasing spatial complexity [2]. Numerical simula-
tions capable of resolving this complexity are prohibitive-
ly expensive to run for long times so we will use a low-
dimensional analog of the reduced MHD equations. This
relatively simple set of 21 ordinary differential equations
can be derived systematically in two steps. As a first step
the perpendicular spatial dependence of all the scalar
fields in (1) and (2) will be represented using only three
orthogonal basis functions, y;(x,) =v2cos(x)/a, y>(x,)
=V2cos(ay)/a, and y3(x,) =2sin(x)sin(ay)/a, where
a is a fixed parameter taken to be 0.8 in all that follows.
In representing a scalar field, such as current, each basis
function is multiplied by a coefficient depending on the
third spatial coordinate z in addition to time. To simplify
notation, these three coefficients can be combined into an
isovector J(z,1).

Projecting Egs. (1) and (2) onto these basis functions
yields a set of six coupled partial differential equations in
one dimension:

00/0r+¢x Q2 =0J/9z—AxJ—VvL - Q, 3)

0A/0t+¢xA=—0¢/0z —nL-A, 4)

where @ =—L-¢, J=L-A, and the linear operator L is
the projection of the diffusion operator —V3 given by the
diagonal matrix L =diag{l,a’ | +a?%. The cross product
appearing in each nonlinearity is the analog of the two-
dimensional Poisson bracket often used when writing the
reduced MHD equations.

To complete the derivation of the low-dimensional
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model the current and vorticity will be represented on al-
ternating points of a uniform grid in z. The spacing be-
tween points will be Az=¢ so the current isovectors,
denoted J%, J', J2 and J?, will appear at z=0, +, %, and
1, respectively; similarly the vorticities @', @2, and Q3
are located at z=1+, L, and . In addition, vorticity
must be prescribed at the ends, z=0 and 1, through two
time-varying isovectors f° and f'. This departure from
the strict alternation between vorticity and current re-
quires a modification of the standard centered difference

scheme:
dQ"/di+¢"x Q"=+ (Az) 7'Q"=J"")— F A"xJ"
—FA" %) —yL-an, (5)
dA%dt+¢'xA’=—(Az) ""(¢'+L 7" f9) —nL- A",
(6a)
dA"/dt+ 5 (¢" '+ 9") x A"
=—1(Az) " "¢"*"'—9¢") —nL-A", n=1,2, (6b)
dA/dt+¢*xA3=(Az) ""(L™ " f'+¢°)—nL-A°>.
(6¢)

These equations are not intended to accurately approxi-
mate Eqgs. (1) and (2), rather they are a low-dimensional
analog of the full partial differential equations. In the
system defined by Egs. (5) and (6) the individual field
line topology is not preserved; however, the magnetic flux
is conserved.

The most important analogy between the two systems
is their global energy balances. In each case the change
in the total energy of the system (magnetic plus kinetic)
equals the work done by the footpoints minus the viscous
and Ohmic dissipation powers: d{(Ey+Eg)/dt=Pr
—P,—P,. In the low-dimensional system, (5) and (6),
each of these quantities is a simple bilinear expression,
such as

Eu=5A%3"+ A" J'+ A2+ ;A )7,
Pr=f"A'—f%A°, (7
P.=via'|2+]|a?*+|a?3.

The other quantities, P, and E, are non-negative expres-
sions similar to Ey or P,; only Pr can assume either sign.
The decay time for a stationary equilibrium, one with
Q"=0, would be n~'. In the coronal case this is as
much as 10 orders of magnitude longer than a typical
transit time so we will take =0 in all that follows. On
the other hand, oscillations about such an equilibrium
(Alfvén waves) are expected to decay after several
periods by one of a variety of mechanisms not present in
the low-dimensional model [8,9]. Since viscosity is the
only mechanism left in the model capable of doing this it
will be retained as an effective Alfvén wave damping.
There are a wide range of equilibrium solutions to Egs.

(5) and (6) which can be distinguished by any one of
their current isovectors; the isovector J° will be used for
this label. If such an equilibrium is perturbed by an
infinitesimal internal displacement it will oscillate in a su-
perposition of eighteen eigenmodes each of whose eigen-
frequencies is either purely real or purely imaginary in
the absence of viscosity. This follows from the self-
adjointness of the energy functional, a property of (5)
and (6) shared by both the full MHD and reduced MHD
equations. Those equilibria with at least one pair of
imaginary frequencies are linearly unstable while those
with only real, nonzero frequencies are stable. There is a
subset of equilibria having at least one pair of eigenmodes
with frequency zero; this subset forms a two-dimensional
boundary between these three-dimensional regions of
stable and unstable equilibria.

It is not possible to distinguish between ideal and resis-
tive instabilities in the low-dimensional system since there
is no analog of the local field line constraints. Reconnec-
tion in this system cannot destroy flux since n=0. Thus
an instability arises when the system may lower its energy
through some combination of ideal motion and change in
field line topology. When such a combination is energeti-
cally favorable in a full MHD system it seems likely that
the ensuing plasma motion would give rise to enough tur-
bulent motion to achieve the necessary reconnection.

During quasistatic evolution the system remains close
to an equilibrium so its progress can be depicted as a tra-
jectory in the space of equilibria, J°. It has been suggest-
ed for full MHD [10] and reduced MHD [2] that motion
cannot remain quasistatic in the neighborhood of the neu-
trally stable boundary. At this point the system will
abruptly relax to a new, stable equilibrium of lower mag-
netic energy, a process called “loss of equilibrium.” The
general features of this process can be elucidated using
the low-dimensional model, and can be expected to per-
tain to both full MHD and reduced MHD.

Quasistatic evolution can start from any stationary
equilibrium; here the arbitrary isovector J°=(4.93,
—2.63,—1.10) will be used to define the starting point.
Rather than random footpoint motion the time-dependent
vorticity isovectors f°=(2¢/74)(—2.07, —1.42,0) and
f'=(21/74)(0.46, —3.52,0) will be used, where the pa-
rameter 7o must be chosen sufficiently large for the re-
sulting motion to be quasistatic. With these conditions it
is possible to integrate Egs. (5) and (6) numerically using
standard integration techniques. A typical solution in
which v=2 and 7¢=>50 is shown in Fig. 1. The magnetic
energy increases slowly from its initial value of Ey =0.8
to Ey =1.2 and then suddenly drops to Ej; =0.6 at time
t==31. Coincident with the drop in the magnetic energy
the values of viscous power and kinetic energy (not
shown) experience abrupt spikes lasting about three
Alfvén times. At times before and after this spike the
values of the kinetic energy remained below 3x10 ¢
times the magnetic energy; this is a strong indication that
the system was evolving quasistatically.
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FIG. 1. Time histories from a single event. (a) Magnetic en-
ergy Em (solid curve) and dissipated energy [dt P, (dashed
curve). (b) Footpoint power Pr (solid curve) and viscous dissi-
pation rate P, (dashed curve).

The values of the isovector J° during this run show a
steady progression toward the stability boundary, ter-
minating at a point very close to the boundary at t =27.
At this time it is not possible to identify an equilibrium
which the system is near. The quasistatic sequence
resumes after 1 =33 at a point well inside the stable re-
gion. The difference in energies between the end of the
first sequence and the beginning of the second sequence is
AE=0.6, consistent with the difference shown in Fig. 1.

Increasing the parameter 7o does not change the loss-
of-equilibrium event just described. The time at which
the event occurs scales with 7o and the kinetic energy be-
fore and after the event scales with 74 2, but the peak
value of P, and the net energy drop are unchanged. The
energy drop is also independent of the viscosity v; howev-
er, the value v==2 was found to minimize the time taken
for a typical relaxation event.

Integrating Egs. (5) and (6) for long times T with ran-
dom footpoint driving yields sporadic loss-of-equilibrium
events, each one similar to the one just studied but with a
wide range of amplitudes. Since the driving is statistical-
ly stationary the system will find a statistical steady state.
It is the properties of this statistical steady state that are
of primary interest in this system and long runs provide a
Monte Carlo approach to study them.

Figure 2 shows the section of one long run with
v=02r)2/20=2, 1 =300, and t¢=100. The magnetic
energy fluctuates continuously in response to the random-
ly varying footpoint motion, sometimes dropping abruptly
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FIG. 2. Section of the time history of a long run with multi-
ple impulsive events, showing magnetic energy Ey and both
linear and logarithmic plots of the viscous dissipation rate P,.

as it did in the previous example. The viscous damping
power has slow quasistatic fluctuations at levels around
vigF ~10"7, and short, strong relaxation spikes with
amplitudes as high as P,=1. These two components can
be distinguished using a viscous power threshold; in this
case we used P,=10"7 A single relaxation event is
defined to begin when P, first exceeds this threshold and
to end when it falls below the threshold for more than one
Alfvén time.

During a full run of 10° Alfvén times, of which Fig. 2
is a section, there were 1093 such events. Figure 3(a)
shows the distribution of amplitudes AE), estimated by
integrating P,(t) during the event. It shows that larger-
amplitude events are less frequent, decreasing at a slope
close to AEy'. The lower cutoff of this distribution is
due to the threshold used for detecting events. The am-
plitudes of events which peak just above the threshold are
likely to be underestimated, leading to inaccuracies on
the left of the plot.

The distribution of intervals between successive events,
At, is shown in Fig. 3(b). These are exponentially distri-
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FIG. 3. Histograms from 1093 events. (a) Event amplitudes
AEy; dashed line is 0.068AE **". (b) Time interval between
successive events, At/zy; dashed line is 0.3exp(—A/3.37.).

buted with a mean value of 915 Alfvén times or about
37g. In other runs with different values of ¢ and 7¢ the
mean interval remains about 37g, independent of the
correlation time 7. Exponential distributions are often
associated with Poisson processes, that is, processes where
the probability of an event does not depend on the time
since the previous event. Since this system is driven by
noise it is not surprising that it has such a property.

A scatter plot of Ar against AEy, for all 1093 events
shows no apparent correlation. This would not be the
case if the magnetic field built up energy continuously un-

til it was released by a loss of equilibrium. Instead, the
magnetic field both gains and loses energy randomly to
the footpoints during the interval between events. This is
possible because there are enough degrees of freedom for
the system to change its relation to the footprints.

Thus, the dynamical state of a nonlinear, quasistatic
but randomly driven system of many degrees of freedom
passes quasistatically through many equilibrium configur-
ations. Occasionally, two neighboring equilibria are
separated by a finite difference of potential energy with
no intervening barrier. The transition between these
equilibria occurs on the fast dynamical time scale and re-
sults in an abrupt release of energy. A simple low-
dimensional system provides a generic picture of such an
event. When this low-dimensional system is driven con-
tinuously the statistics of its impulsive relaxation events is
Poisson-like and their frequency varies as AE; ', where
AEy is the energy released in a single event. It remains
to be established that these statistical properties are com-
mon to systems of higher dimension.
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