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Asymptotic Lamb Shifts for Helium Rydberg States
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A global formula for the asymptotic Lamb shifts of the Rydberg states of helium is obtained by calcu-
lating the electric field perturbation due to the Rydberg electron on the He+(Is) Lamb shift. The result

substantially reduces theoretical uncertainties in calculated transition frequencies. A comparison with

experiment for transitions among the n =10 states of helium reveals systematic discrepancies much

larger than expected corrections due to higher-order relativistic and Casimir-Polder effects.

PACS numbers: 31.20.Di, 31.30.3v, 31.50.+w

The accuracy of both theory [I,2] and experiment [3]
for transition frequencies among the Rydberg states of
helium has now advanced to the point that the compar-
ison is sensitive to both the Lamb shift (i.e., electron
self-energy and vacuum polarization) and long-range
Casimir-Polder retardation corrections [4-6]. Both are
quantum electrodynamic (QED) effects, with the latter
being (in lowest order) a correction to short-range ap-
proximations to the retarded Breit electron-electron in-

teraction energy. For a Rydberg electron with radial
coordinate x in the range ao«x &ao/a, the leading re-
tardation term is proportional to e a ao/x; but for
x»ao/a, the predicted power-law dependence changes to
e 'aao/x ' (ao is the Bohr radius and a the fine-structure
constant). The helium Rydberg states provide a precise

test of QED in a system containing more than just a sin-

gle electron in the Coulomb field of the nucleus. The
comparison between theory and experiment provides an

opportunity to verify the smaller Casimir-Polder effects if
the Lamb shift corrections are suSciently well under-

stood.
Many years ago, Kabir and Salpeter [7] obtained the

lowest-order Lamb shift for helium. In atomic units, it

differs from the one-electron case only in the replacement
of the usual Bethe logarithm by the corresponding two-

electron quantity (see below), and the overall multiplying
factor of (V V), where V = —Z/r is the nuclear Coulomb
potential, becomes the two-electron expectation value

(B(ri)+b(r2)) instead of Z /trn . The final result, rela-

t

tive to the one-electron ion, is

hEt i
= —', Za (b(ri)+h(f2))[ln(Za) +ln[Z R~/k(nLS, Z)]+ I+2.296traZ+(p/M)Cst} AEL(ls)—

for an LS-coupled state with principal quantum number
n. AEt (Is) is the corresponding one-electron Lamb shift
which is common to all states, and (p/M)CM contains
finite-mass terms. This and the xaz term are small
(-2%) corrections well known from the one-electron
Lamb shift. The two-electron Bethe logarithm (BL) for
nuclear charge Z is defined by

ln[Z Rst/k(nLS, Z)] =3/D (2)
with

~ =Z I(+olpi+pzl~t &I (Et —Eo) In2(Et —Eo), (3)
k

D=& I(+olpi+p2l~t&l-'«t —Eo). (4)
I-

The denominator of (2) can be simply evaluated by use of
the sum rule

D =2nZ(S(r, )+a(r, )&,

but there is no corresponding simple sum rule for A. A
direct summation over intermediate states is diScult be-
cause there are large contributions from highly excited
states and the two-electron continuum. A recent dramat-
ic advance in accuracy has been achieved for the low-

lying 5 states by the use of sophisticated finite basis set

H = ——p ——+ ——V~ — + V(r, x)1, Z 1, Z —
1

r 2 x

(6)=h, +h,-+ V(r, x)

t methods [8], but for the higher-L states, the best esti-
mates are based on a simple screened hydrogenic approxi-
mation [2,9]. The purpose of this Letter is to apply the
methods of asymptotic analysis to obtain a global result
for the two-electron BL that becomes essentially exact in

the limit of high-L states. The results substantially
reduce theoretical uncertainties for transitions among the
n =10 states of helium.

The starting point for the calculation is the physical
picture of a helium atom with a Rydberg electron in a
high-nL state moving in the field of a polarizable core
with effective charge Z —

1 consisting of the nucleus with

charge Z and a tightly bound inner ls electron. For a
suSciently highly excited state, exchange effects can be
neglected and the electrons treated as distinguishable.
Denoting the position vectors of the inner and outer elec-
tron by r and x, respectively, the corresponding nonrela-
tivistic Hamiltonian is
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with

V(r, x) = I/(x —r) —I/x.

The eigenvalues of h„+h, are —Z /2 —(Z —
I ) /2n;

and treating V(r, x) as a perturbation gives the leading
polarization correction ——, al(x )„I, where tt~ is the
core polarizability.

In the same one-electron screening approximation, the
asymptotic expansion for D is known to be [10], from the
sum rule (5),

The leading term of A can also be simply evaluated by
writing the wave functions in (3) as products of screened
hydrogenic wave functions and taking advantage of the
one-electron properties of the transition operator, with
the result [9]

A =2Z [pl,. + [(Z —I ) /Z n ]p„t]+AAnoi, (9)

+D wave,

normalized to unity up to order F-. The matrix element
4xZ(go~8(r)~yz) then yields directly the second term in

Eq. (8). It follows that AA ~~ also has the form
A4(x )„t, where A4 is an unknown perturbation coef-
ficient. We have not been able to find a convergent
scheme for calculating A4 by perturbation theory because
the highly excited states in Eq. (3) are strongly per-
turbed, even for weak fields. The use of parabolic coordi-
nates helps to simplify the calculation, but the bound-
state sum over n still diverges as n .

To summarize, the problem is to calculate the change
in Pi, due to the presence of an external electric field. To
circumvent the divergent perturbation sums, we replace
the actual intermediate states by finite basis sets in para-
bolic coordinates (=r+z and tl=r —z. The basis sets
are a generalization of those used previously in BL calcu-
lations [11]. The explicit form is

where P„I =In[ko(nL)/RM] is the hydrogen atom BL [9],
and AA~~ is the polarization correction to Pt, due to the
electric field of the Rydberg electron. Since the energy
shift of He+(Is) in an external dipole field of strength F
is by definition ——'a|F'-, the eA'ective field strength (in
a.u. ) at the nucleus due to the Rydberg electron is F
=(x )„t. Treating Fz as a perturbation of yo(ls) up to
second order gives

yz(ls) =F ( ——, + —, r + -—,
' r + —', r4) Yo(r)e

D D( )F +D(4)F4+ (12)

where, from (8), D4-' = —31 (for Z= I), and the exact
values for the higher-order terms are

D4 ' = —12303/8, D4 = —13109865/64,

D4" = —90205 710189/2048 .

Table I compares these with the values obtained from a
least-squares fit to the finite basis set calculations, with
F- in the range 10 "(F-( 10 . The good agreement
even for the higher-order terms gives confidence that the
spectrum of intermediate states is adequately represented.
As a further check, all calculations were done in both the
"velocity" and "acceleration" (p i V V/hE ) gauges.
The two agree, although the latter is more rapidly conver-
gent. The convergence of the "length" form is poor.

The only change needed to calculate P~, (F) is to add
an extra factor of Inh, E in the sum over states. The result
ls

Pi,, (F) =2.984 128 556+0.316262( I )F

+24.61(1)F +O(F"), (13)

with F' replaced by (x )„I fot the Rydberg states of
helium. Expanding the denominator into the numerator
of (2), and using (8) and (9), the final result for the two-

TABl E f. Comparison of exact expansion coefficients D~'
[see Eq. (l2)I with the finite basis set results (in a.u. ).

Coet5cien t Exact Finite basis set

above, except that i = —1,0, . . . , 5 for m&0 (m is the
magnetic quantum number). In the second sector, j
=0, 1,2; i =0, 1,2 (i = —1,0, 1 for me0), and 2kt follows
the exponential distribution

2kt =exp(2. 75xt i
)"", k =2, , 18,

where the xl,- are the zeros of a Laguerre polynomial of
order 18. These functions are necessary in order to cover
a wide range of distance scales and obtain convergent re-
sults with basis set size. The total Hamiltonian, including
the Fz term, is then diagonalized and the resulting pseu-
dospectrum used to perform the summations over inter-
mediate states. The final step is to determine A4 by ex-
tracting the coe%cient of F'- from the BL calculated for a
range of finite field strengths. A firm control over the ac-
curacy of the calculation is provided by simultaneously
calculating the coeScients in the corresponding D4 ex-
pansion,

t =(& —tI)'(&+ tl)'(&tI) l"' ~'exp[ —kt (&+ tI)] . (10)

For the ground state, 2XI, =1, and i and j both run from 0
to 6 for a total of 49 basis functions. For the excited
states there are two sectors. The first is the same as the

g (2)
4

g (4)

D (6)

g (II)
4

0]ll) )

—31.000 000
—1537.875 000
—204 841.640 625

—4.404 575 693 x 10'
—

I 339570593x ) 0 0

—31.000 000 0003 (3 )
—

1 537.874 94(3 )
—204 815.6(1.0)

—4.391(2)x 10'
—1.48(l ) x 10'"
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electron BL is
T

Info(lsnL, Z)/Z Rsr] =p„i p +Z 0 31626+
(z- I)' 31 Z —

1

Z4n' 2 Z

4

(i4)

The second term in square brackets is negligible, as are
corrections to P„i due to the action of the ——,

' at/x po-

larization potential on the Rydberg electron.
Equation (14) is a global result that applies to all Ryd-

berg states with L &0. It rapidly improves in accuracy
with increasing L, and becomes exact in the high-L limit.
Of particularly important significance is the fact that it
removes the largest source of uncertainty in previously
published [1,2] high precision variational calculations for
the Rydberg states of helium up to n =10 and L =7. The
extra contribution that should be added to these results

4 3

AEI Ij
= — 0.31626(x )„( .

3zZ'

Table II gives values of AEI p for a representative sample
of states. For L =1, the value tabulated is 0.5h, EI p with
+0.5h, EI ~ as the uncertainty. For L & 1, the values are
hEI & with + 1.5AEI p(x )„I/(x )„I as an estimate of
the contribution from higher-order terms [cf. Eq (8)].

The complete asymptotic expression for h, EI ] is

4a'
aE( i= i (Z' ——"Z '(x ) + '"'Z '(x ') )

1r

4

~ in(Za)-'+ —,", —p, , —
Z

n 'P„l. —0.31626Z (x )„I+ 2.296naz+ CM AEI. (Is—) .
M

(i6)

TABLE II. Values for the energy shifts hEI. ,~ and hEI i, in

MHz. The last two columns compare Eq. (I) with the asymp-
totic Eq. (16).

State hE). ,p ~EI. i [Eq (I)] &EI., i [Eq. (16)]

2'P —I.S(I.S)"
2'P —1.8(I.S)
3 'P —0.6(6)
33P —0.6(6)
3 'D —0.047(17)
3 'D —0.047 (17)
10 'D —0.001 6(8)
I O'D —0.001 6(8)
10 ' F —0.000 26(1 )
10'F —0.00026(l )
106 —0.000069(1 )
I OH —0.000024(0)
10I —0.000010(0)
I OK —0.000005(0)

101.2( I .8)
—1213.1 (1.8)

34.2(6)
—346.9(6)
—11.63(2)
—14.36(2)
—0.366( I )
—0.492 ( I )
—0.073 6 ( I )
—0.074 6 ( I )
—0.01950(1)
—0.006 59
—0.002 62
—0.001 16

—1087.4
—1087.4
—357.8
—357.8

—9.53
—9.53
—0.255
—0.255
—0.072 7
—0.072 7
—0.01950
—0.006 60
—0.002 62
—0.001 16

"Numbers in parentheses denote uncertainties in the final
figures quoted.

For arbitrary Z, (x )„I scales as (Z —I ) . Numerical
values obtained from Eq. (I) and Eq. (16) are compared
in Table II. The differences are due entirely to the use of
the asymptotic expansion for n(b(ri)+B(r2)) in Eq. (16)
(represented by the first group of terms in parentheses),
in place of the exact values [10]. For L) 4, the results
become practically indistinguishable. The above does not
include the Araki-Sucher electron-electron QED terms
denoted in previous work [1,2] as AEI q. These have al-
ready been calculated to high accuracy. The asymptotic
form is

3

WE( &
= — ((x ')„I +3Z '(x ')„() .

S
(i7)

The second term comes from a multipole expansion of
I/riz. Also not included are spin-dependent anomalous

magnetic moment corrections which spin average to zero.
An interpretation of these results is that the study of

transition energies among the Rydberg states of helium

probes the effects of electric fields on the Lamb shift of
He+(Is) through the (x )„I terms in Eq. (16). Almost
all of h, EI i can be interpreted in this way, with the larger
part coming from the polarization of the n(B(ri)+8(r2))
electron density at the nucleus, and the smaller part from
h, EI ~ in Table II. The remainder comes from the small

P„l Bethe logarithm term in Eq. (16) for the Rydberg
electron [9]. The overall agreement between theory and

experiment for the low-lying states is satisfactory at the
~ I MHz level [2], but for transitions among the n =10
states, there are important discrepancies between theory
and the revised experimental data of Hessels eI al. [3] as
shown in Table III. The spin-averaged transition ener-
gies are nearly independent of spin-dependent effects.
With the addition of the hEI ~ contribution, the theoreti-
cal values are the same as published previously [I]. The
differences are several times larger than the residual
Casimir-Polder retardation corrections V„'„'t tabulated by
Au and Mesa [61, which are shown separately in Table
III. The last column gives the contributions from the
screened one-electron Dirac energies h, E~ of order
a (Z —I) . Since these are also much too small, and
other sources of theoretical uncertainty have now been re-
duced, there appears to be a well-defined systematic dis-
crepancy between theory and experiment. The discrepan-
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TABLE III. Comparison of theory and experiment for the spin-averaged transition frequen-
cies among the n =10 states of helium (in M Hz).

Transition

D-F
F-G
G-H
H-I
I-I(i

Experiment

14560.651(34) "
2036.558 8(22) '

491.005 2(5) '
157.0524(2) '
60.8160(2) '

Theory

14560.655(1)
2036.5745(I)

491.008 3( I )
157.053 7 (0)
60.816 8 (0)

Difference

0.004(35)
—0.015 7 (23)
—0.003 1 (6)
—0.001 3 (2)
—0.0008(2)

—0.002 397
—0.001 223
—0.000 714
—0.000453
—0.000 304

0.000 153
0.000046
0.000018
0.000009
0.000004

"Au and Mesa (Ref. [6]).
"Farley, MacAdam, and Wing (Ref. [12]) global fit.
'Hessels et al. (Ref. [3]).

cies for the higher-L transitions would be removed by an
additional energy term of -2.4a (x )„I a.u. However,
this would shift the 10D-10F transition by about —100
kHz. Since this is the one case that appears to agree with

theory, but with lower accuracy, a repetition of the mea-
surement could be significant in confirming or resolving
the disagreement. The above additional term would also
seriously disrupt the existing agreement between theory
and experiment for transitions among the lower-lying
states, as fully discussed in Ref. [2].
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