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Deuteron in the Skyrme Model
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Classical bound-state solutions for the baryon number =2 sector of the Skyrme model have been
found by numerical simulation in 3+1 dimensions. The Bohr-Sommerfeld level of quantization is imple-
mented. Properties of the deuteron obtained by quantization about the periodic classical solution im-
prove on previous work based on quantization about the minimum energy static toroidal configuration.
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QCD has had little direct impact on low-energy nu-
clear physics. While the high-energy behavior of QCD
can be simply understood in terms of quarks and gluons,
at low energies their dynamics is extremely nonperturba-
tive. However, a possible framework for low energy fol-
lows from a dual description of QCD that is suggested by
the 1/N expansion. In this conceptualization of QCD, the
baryons and nuclei arise as topological solitons [1] of a
stringlike theory of meson dynamics [2]. Such a descrip-
tion of QCD, exact in principle, could lead to a simple
fundamental description of low-energy nuclear physics if
1/N is effectively a small expansion parameter, even for
N=3.

Until the string theory of meson dynamics is deter-
mined, one can begin to explore this framework with the
Skyrme model [3]. This model is an effective chiral La-
grangian [4] for low-energy QCD,
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where U(x,t) =exp2in?(x,t L%/ f.); Ler describes QCD
with massless quarks for all wavelengths > h/myc~
fm. It results, in a renormalization-group sense, from in-
tegrating out all quantum fluctuations with wavelengths
smaller than A/myc [5). Although U should be an ele-
ment of SU(3), in the following, we will take it to be an
SU(2) field. In QCD, the 1/N perturbation theory gives
an ordering of importance of physical effects. If fr~+/N,
and e ~1/~/N, then Ly satisfies all QCD 1/N perturba-
tion theory counting rules. Remarkably, this effective
Lagrangian of low-energy pion dynamics [4] also has nu-
cleons [6], baryon resonances [7], and nuclei [8] as topo-
logical soliton excitations. If 1/N is effectively a small
parameter for QCD, then the solitons are semiclassical.

If nuclei are semiclassical bound states of solitons, then
their spectrum can be studied in the following way [9].
In general, quantum bound states are described by the
poles of

1 .
=—

T o dTeiETlré’ —iHT’

tr

where

_fu (x‘1+T)=U(x.l)DU(x”)

trexp’#HT

Xexp [%S[U(x,l)]] ,

and the trace of the time evolution operator is expressed
in terms of a functional integral over field configurations
that are periodic in time 7. The semiclassical approxima-
tion is dominated by field configurations that satisfy
65=0, the stationary phase approximation. We are
therefore interested in studying periodic field configura-
tions (of given B) that satisfy the classical equations of
motion.

We will work in rescaled units: E is measured in units
of fx/e~N, x and ¢ are in units of 1/ef,~1, and, conse-
quently, in these rescaled units the action S is proportion-
al to 1/e>~1/(1/N), showing that 1/N plays the role of
h.

Since we are interested in the B=2 bound states, we
are led to study energetically bound, periodic solutions.
We will examine the maximally attractive channel
[10,11] in which static B=2 solutions have previously
been found [12-15]. Our approach is to use numerical
finite difference techniques to simulate the classical evolu-
tion of the Skyrme model and search for periodic solu-
tions. This entails certain approximations. Our compu-
tational domain is a box in which the field U approaches
the unit matrix at the edges of the box. In the experi-
ments described below, the box is 16 by 16 by 8 (in scaled
units). By use of symmetry planes, the actual computa-
tional domain is reduced by a factor of 8. The reduced
finite difference grid has 56 x 56 x 28 lattice points, which
leads to a lattice spacing of 0.143. The finite difference
scheme [16] used a Courant-Friedrich-Levy ratio (AT/
AX) of 0.5. This improvement over previous finite dif-
ference schemes [17] allows us to study low-energy in-
teractions necessary for the bound-state problem.

Initial field configurations were prepared consisting of
two separated Skyrmions. The continuum Skyrmion field
configuration is not a solution on the finite lattice. In-
stead, the initial configurations were prepared by relaxa-
tion. The continuum Skyrmion solution is imposed upon
the lattice, then evolved forward in time with a viscous
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attenuation. The initial separation was eight scaled units.
As the Skyrmions relax, they approach each other as
their orbital energy is dissipated. By stopping the relaxa-
tion procedure after varying numbers of relaxation steps,
we produce a family of initial conditions characterized by
decreasing total energy and diminishing distance between
the Skyrmions. The initial separation [18] varies smooth-
ly with energy, from 3.15 for the lowest-energy run of
71.99 near the toroidal minimum to 7.23 for the highest-
energy run of 74.40 near the 2M skyrmion continuum. In
other words, we are examining a range in maximum sepa-
rations of approximately 1.5 to 3.5 times the radius of a
single Skyrmion.

For each member of the family of initial conditions, we
evolve the solution forward in time without attenuation.
At the point of closest approach, the two solitons merge
into a toroidal field configuration similar to the static
B=2 solution [13-15]. The Skyrmions then separate at
right angles [11]. The process repeats with the Skyr-
mions falling back toward each other, forming a toroidal
configuration, then scattering at right angles. When the
Skyrmions reach their point of maximum separation after
the second pass, they are very near to their starting
configuration. The configuration is not identical to the
initial configuration since, during the large field deforma-
tions at closest approach, energy was transferred from the
orbital motion into an internal radial excitation of each
Skyrmion [19] (see Fig. 1). Since the period of the inter-
nal oscillation is much smaller than the orbital period, we
will ignore the internal excitation in the following and
treat our nearly periodic solution as representative of the
true periodic solution.

The Bohr-Sommerfeld quantization requires that we
measure the energy, action, and period of the periodic
solution. In order to avoid the ambiguities of measure-
ment created by the transfer of orbital energy to internal
excitations, we measure the action and period in the first
quarter of the orbit as the Skyrmions fall together. We
determine the quarter period from the minimum of the
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FIG. 1. Potential energy as a function of time for E=74.0.
Orbit starts at +=20.2 with Skyrmions at greatest separation.
At r=38.1, Skyrmions have merged into toroidal configuration.
At t~56, Skyrmions are well separated, but relative axis has
rotated by 90° from initial configuration. Note transfer of or-
bital energy into internal excitation with short period.

kinetic to the minimum of the potential energies. We
multiply these values by 4 to represent the action and
period of the true periodic solution. The finite difference
method conserves energy to 0.5% or better. We take the
energy to be the average of measured energy over an or-
bital period. As a consistency check, we have also com-
puted the energy from the relation E=—dS/dT. The
two methods of measuring the energy agree to within
0.2%. The agreement suggests that our methods of deter-
mining the period, action, and energy are consistent.

From the analysis of Dashen, Hasslacher, and Neveu
[9] we have
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where
W(E)=S(T(E))+ ET(E)+quantum corrections ,

with S the classical action for the period 7. The plus sign
in the denominator is due to the existence of two turning
points in the orbit. The bound-state poles arise from the
condition

W(E)=Qn+1)re?,

where again E is measured in units of f,/e. In Fig. 2 we
present our results for W vs E on the finite lattice. The
curve extends from energies corresponding to the mini-
mum of the potential well to the continuum of two nonin-
teracting Skyrmions. (Because of finite lattice effects,
the value 2M skyrmion~74.6 is larger than the continuum
result —~73. Until we have repeated our experiments on
larger lattices and extrapolated to the continuum limit,
our results are largely qualitative.) The number of bound
states predicted by the quantization condition is deter-
mined by the value of 2. For e? large (the continuum
value has been estimated in the B=1 sector to be approx-
imately 30), there is only a single bound state. In nature,
the B=2 system has only a single weakly bound state, the
deuteron. Quantization about the static configuration
[13-15] would only be a good approximation if e were
small, in which case there would be many B=2 bound
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FIG. 2. Quantization function W(E) that determines the
semiclassical bound-state spectrum from the condition W
=Qn+1)re’.
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states.

For large e?, our semiclassical picture of the B=2 sys-
tem has a large quadrupole moment and small energy
splittings between spin-isospin states. Since the dynami-
cal solution for large e? spends most of its time with the
Skyrmions well separated, the radius of the system is
about 2 times that of the static solution. Consequently,
the quadrupole moment should be about 4 times larger
than for the static solution. The quadrupole moment of
the static solution [13] is about i of the experimental
value. The quantization of the global rotation and isospin
collective coordinates gives small splittings for the fine
structure of states. Expanding the action in the presence
of these collective coordinates gives terms for coupled tri-
axial rotors [12], with moments of inertia functionals of
the time varying fields [20]. For the lowest-lying states
the rotors decouple [12,13] and simplify. The rotor
correction to the quantization condition [21,22] for the
s=1,i=0 state is
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where Eq= —dS/dT, and where we follow the notation

of Ref. [13] for the moments of inertia. From the Eg
that satisfies the quantization condition, the quantum en-
ergy is
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Similarly, for the s=0,i=1 state, the result is similar
with ¥, — U,,. For a given value of e? these correc-
tions to W push the bound-state energy higher. Because
Vi1 > Uy, the s=1,i=0 state is lower in energy than the
s=0,i=1 state. Because V|, and U,, at T(E), corre-
sponding to the largest separation, should scale as the
square of the effective radius, the splitting of these states
should be ~ % that of the static solution.

For large e? our semiclassical quantization yields a pic-
ture of the B=2 system which is a weakly bound pair of
nucleons, well separated for most of their period, with
small energy splittings and a large quadrupole moment.
The consistency of these qualitative features with experi-
ment gives additional support to the conjecture that 1/NV
is a good expansion parameter for QCD.
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