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Intermittency in Nuclear Multifragmentation at Relativistic Energy
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The charge distribution of nuclear fragments for the nonfissile events of '"U at 0.968 GeV in nuclear
emulsion is fitted with a power law. The method of scaled factorial moments is used to study Auctua-
tions in the nuclear fragmentations. An intermittent behavior is found in the data, but no clear evidence
of critical phenomenon is observed in nuclear fragmentation.

PACS numbers: 25.75.+r, 24.60.ky

The recent studies of intermittency [I] in particle and
nuclear collisions have revealed a quite fruitful field of
research, and in fact the study of fluctuations has led to
interesting insights on physical phenomena. Moreover,
the intermittency analysis in terms of scaled factorial mo-
ments in relation with percolation models has been shown
to be relevant in the study of the nuclear multifragmenta-
tion process [2]. In nuclear collisions at lower bombard-
ing energies ( & IA GeV) particle production is strongly
suppressed and nuclear breakup into fragments dom-
inates. Fragment-size distributions exhibit similar fea-
tures to those known in percolation models [3]. Thus
heavy-ion collisions offer a unique opportunity to study
new phases of nuclei. One phase is of a high-density
high-temperature region around the quark-gluon plasma
(hadron phase transition or a thermal transition at equi-
librium). The other phase is the low-density moderate-
temperature region near the liquid-gas phase transition,
but not at equilibrium —a nonthermal process. One can
study the transition by looking at the distribution in com-
position of the final products. Here we shall look at the
nontherma1 process.

In 1984, we did an analysis of nuclear interactions pro-
duced [4] in emulsion from -""U projectile at 0.963 GeV,
in which 51% of all the 894 interactions were due to
fissionlike fragments with a cross section of oF =1755
~82 mb. Recently, considerable interest has centered

around the idea of nuclear multifragmentation, so our in-
terest in the present Letter is to analyze the remaining
nonfissile events which broke up into multifragments.
When a -""U ion passes through the emulsion detector,
the interactions in this medium were recorded up to
=2.7 cm (corresponding to energy between 960 and
240), where various processes are competing which give
rise to different charge spectra of the projectile fragments
(PFs). The energy of the produced PFs is high enough to
distinguish them easily from the target fragments [5]. In
each event the charges of these projectile fragments were
determined by a combination of different methods which
included grain density, gap density, 6-ray counting, rela-
tive track widths, etc. [4]. For projectile fragments of
heavy charges which stopped in the stack, we used rela-
tions between their thin down track length and the widths
[6] which were developed from the data of standard stop-
ping tracks by drawing the profile of their last (150-1000
pm) thin down track lengths with the help of a special
Leitz "discussion tube" and comparing them with the
profiles of unknown tracks of different charges. A heavy
fragment here is defined as a cluster with charge greater
than the a particle. While checking the charge conserva-
tion, the pions were eliminated from the angle given by
the Fermi momentum [7] at each interaction point.

In Fig. 1(a) is shown the charge distribution of all the
nonfissile fragments produced in 374 interactions from

10' „
Ia)

960 747 5(0

Energy (A MeV)

242
20

(c)

- 60.0

-300-

j6

12

8

+ ~+
+ ++ik i Q +

++ + +~ +++ ++
+

I, ,

. EI. it

, 1, I'

10' .—

10' .AS

920
2792

0 c

46 6g
Charge, Z 0istence (crnj P F Multiplicity

FlCi. l. (a) The charge distribution of all the fragments emerged in nonfissile events of '"U in emulsion. For the solid curve, see
text. (b} The charge released Zy as a function of the energy. (c) The multiplicity distribution of the projectile fragments produced
in nonflssile -""U events.
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where

for events with mean fragment multiplicity (n„,) in the
fragment charge interval hs which is divided into M bins
of size b's =As/M. The number of fragments in the mth
bin (m=1, 2, . . . , M) is n„,. If self-similar fluctuations
exist at all scales Bs, the factorial moment of the order q
is given by (Fv) =(hs/Bs) '. The exponent av is the slope
characterizing a linear rise of In(Fv) with Inbs for all-
bins of bs. The exponent aq increases with increasing or-
der q of the moment; however, for a random uncorrelated
particle production, (F„) should be constant for all values
of q. For nonAat fragments multiplicity distributions
varying within a finite bin of width Bs introduce an extra
M-dependent correction factor Rv which is given by [9]

+ Mv(n„, &q

Rq=
M m-i (Nf&"

(2)

Z=l to 92. These estimates have an accuracy of + 2
charge units. One of the remarkable features of the frag-
ment charge distribution is the appearance of an inverse
power law of the cluster size ~hich fits to the fragment
charge distribution and is shown in Fig. 1(a). The value
of the exponent is —2.01 ~0.09 up to Z =25. Power-law
behaviors have also been seen in cluster-size distributions
at the percolation threshold [8]. The energy dependences
of the number of singly charged particles, mostly protons
(N„), of doubly charged helium nuclei (Z, ), and of the
total charge released on heavy (Z~ 3) fragments (Zf)
are shown in Fig. 1(b). It can be seen that Z, is weakly
dependent on energy as the energy varies from 9603 to
2408 MeV, and decreases linearly from N =7.40~0.74
to 5.78 ~ 0.75 with (N, ) =6.70+ 0.35. Similarly, N„
shows a linear decrease from 22.61 ~ 2.25 to 14.85+ 1.93
with an average (N„) =19.96~ 1.03, which presumably
represents mostly a decreasing degree of breakup. The
average number of fragments with Z» 3 is 3.34+0.17.
The multiplicity distribution of all the charged fragments
with Z= 1 to 92 is shown in Fig. 1(c), and we find that
for the PFs of multiplicity 27 ~Nf «80 the average
fragment multiplicity is (Ni) =50.53+ 3.88.

For intermittency to be present in the nuclear mul-
tifragmentation process, both scale invariance and ran-
dom character of the scaling law are required. In mul-

tifragmentation, the charge distribution of the fragments
[Fig. 1(a)] and the fragment multiplicity distribution
[Fig. 1(c)l lead us to test the intermittency behavior in

these two variables. For a physical system, the scaled
factorial moment F„oforder q is calculated by [1]

&F,)= g n„, (n„, —I) (n„, —@+i)),1 1

where
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FIG. 2. (a) The variation of ln(F~)'""' as a function of —lnbs
for the events with 0.29 & m &0.87. (b) The same plot as in

{a), but for the events with Ni » 3 of charge Z» 3. {c)The
variation of lnF~ as a function of InF„ for '"U (q =3-6) and
""Kr at 1.528 GeV (q =3-5). The solid lines are the least-
squares fits to the data points.

(n„,) =
Nevent. ' i-]

and (Ni) is the average fragment multiplicity in the inter-
val hs. Thus, (F„)/R„=(F„)'"",which measures the
properties of dynamical fluctuations. In doing so, one
must be careful in selecting the smallest bin, which must
not be smaller than the resolution of the detector as dis-
cussed in Ref. [10].

From Fig. 1(c), we selected a sample of 170 events
with fragment multiplicity 0.29 (m &0.87 in the scaled
units m =N/N~ „„,whe. re N „„92. is the maximum pos-
sible number of fragments, and we applied the above
technique. The distribution for (Fv)"" is plotted as a
function of —In8s and this is exhibited in Fig. 2(a),
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where the moments for the fragment multiplicity distri-
bution continue to increase according to power law with

decreasing bin width bs down to the experimental charge
resolution. For the bs variable, the slopes a~ obtained
from the least-squares fitting of the data points are
a2 =0.0068 + 0.0002, a3 =0.0102 + 0.0003, a4 =0.0133
~ 0.0004, a5 =0.0163~ 0.0006, a6 =0.0191 + 0.0006,
a7 =0.0216+0.0008 and az =0.0239+ 0.0010. They in-

crease with the order q of the moments for all values of
Bs. %e also selected 165 events with a large number of
heavy fragments Wf ~ 3 of charges Z & 3 including pro-
tons and alpha particles. These are relatively soft col-
lisions and the results for In(F~)""' vs —In8s are shown
in Fig. 2(b). The slopes obtained from the least-squares
fitting of the data points are a2 =0.1507 ~ 0.0055,
a3 =0.1573 + 0.0086, a4 =0.2026+ 0.0117, aq =0.2448
+ 0.0147, a6=0.2847+ 0.0176, a7=0.3156+ 0.0206,
and aq=0. 3524+0.0232. The slopes in this case are
much higher than in the previous case but in general they
have the same characteristics as shown in Fig. 2(a). In

both cases, the linear growth of the factorial moments
clearly testifies to the presence of an intermittency pat-
tern of the charge/mass distribution in the sample. The
number of events in the present data is not large enough
and does not allow us to do a more detailed study of the
selection criteria for the critical events and especially
those corresponding to narrow multiplicity bins of frag-
ments. Recently, Ochs and Wosiek [11] have suggested
that the moments of higher-order Fq are related to the
second moments F2 and they give important hints on the
underlying dynamics. In Fig. 2(c), we have plotted InF2
vs lnFq; the least-squares fits to the data points all meet

approximately at one point giving the ratios rv =lnF„/
lnF2=a /ap as r3=1.6, r4=2.3, rs =3.1, and r6=4.0.
These ratios of the slopes are weakly dependent on the re-

action type and this can be seen when we plot the ratios

rq for the multifragmentation of Kr at 1.523 GeV [12].
In Fig. 1(a), the observed multifragmentation process

follows the power-law behavior near the critical point and

such a nonthermal behavior has also been seen in the
clustering-size distribution at the percolation threshold
[8]. The power-law dependence may be considered as a
necessary but not a sufficient proof for this transition. In

order to check the presence of the critical phenomenon,
we used a method which compares several quantities that
behave in a qualitatively diA'erent way when a phase tran-
sition is present or not. These quantities are the condi-
tional (second) moments which are enhanced in the mul-

tifragmentation region, provided that they are linked to a
critical behavior. Second moments are given by [3]
M2 =ps m (s), where m (s) =0, 1,2, . . . , is the multi-

plicity of diAerent fragments in the jth event. The sum

runs over all fragments excluding the heaviest one pro-
duced in the event, and then it is normalized by Sp=92
(total charge of the breaking system) giving the normal-
ized moment S~2. Campi [3] has investigated the condi-
tional moments of the fragment-size distribution and

shown that nuclei break up as a finite percolation net-
work. In Fig. 3(a) is shown the relation between the nor-
malized second moment (InS2) and the multiplicity n,
where n is the ratio of the number of charged fragments
—

1 {the maximum charged fragment, Z „. „) and the to-
tal charge Z=92. The third parameter is the fragment
multiplicity which is divided into three groups, i.e., (a)
soft, L~ (3-27), (b) medium, Lq (28-58), and (c) hard
collisions, L3 (59-92). The multiplicity cuts introduce
restrictions on the available space in the figure. Accord-
ing to the percolation model [3] such a plot should give
rise to two branches and both are observed in this figure.
The maximum value of {lnS2) =6.0 is at n =0.29. The
broad maximum instead of a singularity is due to the
finite size of the system. In Fig. 3(b) is plotted the
charge of the largest fragment lnZ „. „vs the normalized
second moment (InSq) (excluding the largest charge) for
L], L2, and L3 groups of particles. Once again, we ob-
serve two distinct branches. The highest multiplicity bin

is only in the lower branch while the lowest multiplicity
bin is in the upper branch and the events with high multi-

plicity are associated with low values of Z,„. The frag-
ments of the L2 group contribute to both the branches.
The events that fall in the critical region should then be
created in a phase transition. Gross and co-workers [13]
find the same curve in calculations based on a microscop-
ic statistical model. In order to have a better insight into
the shape of the fragment-size distribution, we examined
the average behavior of relative variance (y2) as a func-
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FIG. 3. (a) The plot of second moments (lnS2) vs n. (b) The
variation of lnZ „. „as a function of (lnS2). (c) (y.) as a func-

tion of n for diAerent multiplicity cuts. {d) The distribution of
q/{a„+1) as a function of q for the events of 0.29 & m & 0.117

(open circles) and of events with JVj ~ 3 of charge Z ~ 3 (solid

circles). The solid line corresponds to the condition a„=0 given

in Eq. (3) (see text).
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(8/8q) [q/(a +1)]„„=0. (3)

ln Fig. 3(d) are plotted the slopes of factorial moments
for the sample with 0.29 (m (0.87 and also with

Ni ~ 3 of charge Z~ 3. The solid line corresponds to
a„=0. Data points (open circles) for fragment multipli-
city (0.29 & m & 0.87) are relatively close to the critical
behavior satisfying the condition given by Eq. (3) while
the data points (solid circles) for events with Nf ) 3 of
charge Z ) 3 do not satisfy the condition (3) within the
range of q values for which factorial moments and their
slopes have been calculated [10].

We conclude that the fragment charge distribution of
"U into a nonfissile multifragmentation process is fitted

with a power law. Multifragmentation also gives evi-
dence of an intermittency pattern of fluctuations and
hence for self-similarity in the fragment-size distribution
from a nuclear breakup process at =18 GeV. The ex-
perimental data and a percolation model of about the

tion of the normalized multiplicity n, where (yz)
=M2Mn/Ml, and this is shown in Fig. 3(c) with a max-
imum at n =0.22. This distribution has proved to be a
sensitive probe for a critical behavior where the projectile
breaks up into two or three medium-sized fragments, thus
giving the largest values of M2. The fluctuations in the
fragment-size distribution are largest near the critical
point and the same is true in the finite system [14]. We
also observed a linear and strong correlation when lnS3 is

plotted against ]nSz (not shown here) giving the largest
values in the critical region and this is also predicted by
the percolation model [3]. From Figs. 3(a)-3(c) we con-
clude that there are strong similarities between the be-
.havior of the data and the predictions of the finite-size
percolation model when we study the correlations be-
tween lnZ,. „, lnS2, (y2), and n

The relationship between intermittency and statistical
mechanics of disordered systems such as the spin-glass
phase has lead Peschanski [15] to find the conditions for
the nonthermal phase —as the new phase is not charac-
terized by a thermodynamical behavior. It was further
concluded [15] that these phase transitions involve the ex-
istence of a critical value q, . for the rank of the factorial
intermittency moments [(Fv)"'"of Eq. (1)] for which one
has

same dimension as shown in Figs. 3(a)-3(c) behave in a
similar way and exhibit some evidence of a critical behav-
ior. But, when the experimental data are compared with
the predictions of Ref. [15] for an infinite system, the
fluctuation patterns in the sample do not give any clear
indication of a critical behavior.
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