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We use the N/D formalism to perform a bootstrap calculation of a neutral, scalar resonance coupled
to longitudinal O', Z gauge bosons. We find that a consistent solution only exists for a mass value very
close to 2.01 gauge-boson masses. The solution does not constrain the couplings and requires large
scattering lengths.

PACS numbers: 11.20.Fm, 11.50.Ec, 14.80.Er, 14.80.Gt

Because of complications associated with the renormal-
ization of scalar fields, theoretical speculation often re-
turns to the possibility that the Higgs scalar of the stan-
dard model is a composite system rather than an elemen-
tary particle [l]. This possibility has also been raised in

discussions of the scattering of gauge bosons. Using
language borrowed from S-matrix studies of pion-pion
scattering, it was found that unitarization of amplitudes
for gauge-boson scattering in the heavy Higgs boson limit
produces amplitudes without sharp peaks [2] which are
di%cult to interpret. Based upon the tools of S-matrix
theory, the question of whether or not a particle is gen-
erated dynamically involves the "bootstrap hypothesis"
[3,4]. The S-matrix bootstrap has never, to our knowl-

edge, successfully calculated the mass and width of any
known particle. Nevertheless, it is interesting to explore
the conditions under which a Higgs scalar arises from an
N/D bootstrap calculation.

The question of the Higgs boson mass arises in the con-
text of the syrnrnetry-breaking mechanism responsible for
the weak interactions. The authors of Ref. [2] discussed
the strength of gauge-boson interactions as a function of
the H iggs boson mass. If the H iggs boson mass is close
to 8', Z threshold then arguments based upon perturba-
tive field theory suggested that the weak interactions
would remain weak at energies approaching 1 TeV. If,
conversely, the Higgs boson mass is above a few hundred
GeV then the gauge-boson interaction becomes strong at
energies above the threshold for scattering O', Z pairs.
Large enough Higgs boson masses could in fact induce
additional low-energy, broad resonances, or even bound
states, in the Higgs channel. Using an approximation to
an N/D bootstrap equation [3] Lee, Quigg, and Thacker
found no restriction on the possible range of Higgs boson
masses, but did find a relationship between Higgs boson
mass and width.

We have accordingly performed a detailed bootstrap
calculation as suggested in Ref. [2]. Our results are at
variance with the estimates made in that reference. We
conclude that the S-matrix bootstrap predicts a unique
Higgs boson mass slightly above the 8', Z scattering
threshold with no constraint on the width.

We follow the authors of Ref. [2] by working in the ap-
proxirnation that ignores channels involving transversely
polarized vector particles. This is a high-energy approxi-

mation that requires energies large compared to the 8', Z
masses for validity. Our result, that the bootstrap works
only near threshold, cannot therefore be taken as a
bootstrap prediction of the mass of a composite Higgs
scalar. We only assert that the bootstrap calculation ex-
cludes solutions at energies high enough for the trans-
verse channels to be decoupled.

We sketch the assumptions, somewhat diAerent from
those in Ref. [2], that underlie the calculation and then
discuss the calculation and the results. A more complete
version of the work reported here will be published else-
where.

The longitudinal components of the W and Z particles
are treated as a triplet of scalar particles with a common
mass of about 85 GeV. The particles are taken to be
members of a weak-isospin triplet. The zeroth approxi-
mation to the scattering amplitude is a set of scalar, iso-
scalar poles, one in each of the three possible elastic
channels (called s, t, and u channels). The common mass
and residue of the poles are to be determined by a
"bootstrap" condition. We assume that the mass is above
the scattering threshold so that it corresponds to a reso-
nance rather than a bound state.

We write a once-subtracted dispersion relation for the
resonating channel (isospin 0, angular momentum 0)
partial-wave scattering amplitude. The subtraction con-
stant is the isospin zero scattering length (multiplied by
the common mass of the triplet). The dispersion relation
accordingly assumes that the scattering amplitude is ana-
lytic in a complex energy plane that is cut along the real
energy axis. There is a gap in the cut between zero ener-

gy and the scattering threshold. Elastic unitarity give the
discontinuity across the positive energy cut. Partial-wave
projections of the t- and u-channel poles give the discon-
tinuity across the negative energy cut. The dispersion re-
lation is a nonlinear integral equation for the partial-wave
scattering amplitude. The solution, if it exists, is neces-
sarily unitary.

We solve the integral equation using methods devel-
oped long ago by one of us [4]. We adjust the input pole
mass and residue until it agrees with the mass and width
of any resonance in the solution. When agreement is
reached then the bootstrap condition is satisfied. We find
that the existence and width of a solution satisfying the
bootstrap condition is critically dependent upon the
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scattering length. The mass, however, is narrowly con-
strained.

We let s be the barycentric total energy and

v = (s —4)/4

the squared barycentric momentum. The W, Z mass is

taken as unity [5]. The barycentric energies in the two
crossed channels are

where Pi is the ordinary Legendre polynomial. An im-
portant caveat is that the s-channel pole from Eq. (3a) is
excluded from the definition of the B's unless M repre-
sents a true bound state (M (2). This is because the
discontinuity across the physical-region cut is uniquely
prescribed by Eq. (5). The I =0 amplitudes then satisfy
the equations (I =0,2)

f'(v) = a'+ B'(v) B'(0—)
t = —2v(l —z)

and

(2a)
+(v/tr) dxpsin (6')x '(x —v —ie)

u = —2v(l +z) . (2b)

A = —aM'-[3/(s —M )+ I/(t —M )

+ I/(u —M )],
A = —aM [I/(t —M ) —I/(u —M-)],

A = —aM [ll(t —M )+ I/(u —M )],

(3a)

(3b)

(3c)

The starting point of the bootstrap is to create a

crossing-symmetric amplitude consisting only of poles at
the Higgs boson mass M. The zero-order isospin ampli-
tudes A' are then [6]

(7)
where the subtraction constant a' is the scattering length.

The scattering length, because it is a subtraction con-

stant, encodes the high-energy behavior of the partial-
wave amplitude. We find that this constant plays a key

role in the bootstrap process. The key role is in fact im-

plicit in Eqs. (3) and (7) which show that the only dis-

tinction between the I-spin 0 and 2 amplitudes is in the

scat tering lengths.
The nonlinear equation (7) is solved by the JV/D

method of Ref. [I] using the /V integral equation of the
first paper of Ref. [3]. The result is

f'(v) =pexp(i8')sin(8'), p=d(v+I)/v, v) 0, (4)

with a taken to be an arbitrary parameter of order unity.
The next step is to construct unitary partial-wave elas-

tic scattering amplitudes f'(v). Because we are primarily
interested in the zero-angular-momentum state we shall

generally omit other labels on the f's. The f's are ana-

lytic in the v plane with cuts along the real axis except
for a gap —

1 & v&0. They have the same imaginary
parts for negative v~ —

1 as the partial-wave projections
of the A'. The f' are normalized to

lV'(v) = a'+ B'(v) —B'(0)

+ (v/tr) dx JV'(x) K'(x, v),

with the definitions

K (x, v)=
-

]/&

x [B'(x)—B'(v)]
x+1 (x —v)

Reo'(v) = I
—(v/n) dx/V (x)L(x, v),

Ref'(v) ' =ReD'/JV ',

(8a)

(8b)

(8c)

(9a)

so that according to Eq. (4) the discontinuity across the

cut along the positive real v axis ("the physical region")
is simply

Imf'(v) ' = —
p (5)

i 2l+ 1

Bi = dz Pt(z)A'(s, t, u),
32Ã 4 —

I

(6)

It is well known [7] that arbitrary poles may be added

to the f functions. Such Castillejo-Dalitz-Dyson
(CDD) poles probably represent the addition of more

"elementary particles" to the 5 matrix and therefore
should be avoided in a bootstrap calculation.

The partial-wave projections of the t and u poles are
analytic functions in the complex v plane with a cut for
v( —1. These projections provide the "driving poten-
tial" for unitary partial-wave scattering amplitudes [1,4].
Notice that the I-spin 0 and 2 amplitudes have identical

driving potentials.
The f are assumed to satisfy once-subtracted disper-

sion relations. The partial-wave projections of the A are
defined by

L(x, v) =[x(x+ I )] 't'P/(x —v), (9b)

where P/x denotes principle value.
Equations (8) were programmed in VAX F'ORTRAN

and run on a MicroVAX 3800. Two programs were writ-

ten independently and checked against each other. The
programs were also checked by substituting a separable
kernel obtained by using I/(x+b) in place of B(x) in

Eq. (9). Use of the separable kernel permits analytic
solutions of the equations for checking the computer solu-

tions. The parameter a was initially taken to be [M/(246
GeV)] to facilitate comparison with Ref. [2].

A successful bootstrap is obtained when Ref ' (as a

function of s) has a simple zero at the input mass with

coeScient I/(3M'-a), according to Eq. (3a). Three arbi-

trary parameters also appear to be available, namely, M —,

M a, and the scattering length. Our principal result is

that there appears to be a unique bootstrap solution at a

mass value of about 2.01 H, Z masses.
The bootstrap solution is sensitive only to the scattering

length. No resonance appears in the output amplitude
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unless the scattering length exceeds about 13.5, in units
of the W, Z Compton wavelength. A successful bootstrap
is obtained using the a parameter of Ref. [2] with a
scattering length of about 13.7. We also find solutions
for larger values of the a parameter with larger scattering
lengths, but with the mass value practically unchanged.
The low-energy part of the phase shift is shown in Fig. 1.

Our calculation shows that a singlet spin-zero Higgs
boson bootstraps itself in the corresponding spin-singlet
elastic scattering amplitude of W, Z's. The bootstrap
mass is very close to the scattering threshold; and is in-
sensitive to the assumed coupling strength. The residues
of the input and output poles can be made consistent by
appropriate choice of the scattering length. If the
scattering length is chosen to be sufficiently small then
there is no output resonance [81.

The last remark describes the mechanism for keeping
the resonance in the I-spin 0 amplitude without also hav-

ing one in the corresponding I-spin 2 amplitude. The I-
spin 2 scattering length must be less than the threshold
value for a resonance.

Our result disagrees with the estimates made in Ref.
[2] where any Higgs boson mass bootstraped itself. It is,
however, quite in accord with intuitive arguments based
upon nonrelativistic quantum mechanics, as follows. Par-
ticle exchange poles in the t and u channels correspond to
Yukawa-like potentials; the inverse mass corresponds to
the range of the potential and the residue of the pole cor-
responds to the strength. Strong, attractive potentials are
required for resonances. The s-wave shift, as a function
of momentum, must pass through x/2, the resonance po-
sition with a steep slope. The steep slope at x/2 provides
the requisite large residue for the output resonance. The
phase shift starts from zero at zero momentum, and it
must rise steeply in order to pass through m/2 with steep

3~/4 I I I I I I I I I I I I I I I I I I I ! I I I I I I I I I I I I I I I I

7T/2

MH
——2.01 Mw

A = 136 Mw

w

0 0.1 0.2 0.3 0.4
q (Mw ) —Barycentric Momentum squared2 2

FtG. I. Isospin 0, angular momentum 0, bootstrap-solution
phase shift vs square of barycentric energy, for scattering of
longitudinal fY,Z's. Residues of t- and u-channel poles are the
same as in Ref. [2I.

slope. The slope at zero momentum is the scattering
length which must accordingly be large and the resonance
must accordingly be close to threshold [9].

Our calculation uses the weak-isospin formalism in or-
der to facilitate comparison with Ref. [2]. The assump-
tion of isospin invariance does not, however, influence the
generality of our conclusions because we are only in-
terested in the zero-charge channels. There are three
such channels, two symmetric and one antisymmetric.
We assume that symmetry is a good s-channel quantum
number. Equation (3) shows that the two symmetric
channels have the same driving potential, so the assumed
I-spin invariance determines the residue to the s-channel
output resonance. This residue influences the value of the
scattering length over some small range but has little
influence upon the bootstrap mass value.

The use of once-subtracted dispersion relations raises a
more delicate question, whether the scattering amplitude
might satisfy an unsubtracted dispersion relation. If it
does, as would seem to be the case in potential scattering
[IO], then the scattering length is no longer an arbitrary
parameter. The bootstrap equations determine not only
the resonance parameters but also the scattering length.
This issue remains to be investigated.

Also remaining to be investigated is another consisten-
cy condition: Does the scalar input pole demand that a
p-wave resonance exists in the antisymmetric channel?
At first blush it would appear not; the angular-momen-
tum barrier permits use of a twice-subtracted dispersion
relation with an arbitrary "scattering length" to control
the existence of an I-spin 1 resonance. This answer may,
however, ignore some hidden subtleties.

Our calculation is quite different from that of Hikasa
and Igi [I I l. Those authors consider the scattering of
massless longitudinal W, Z's and write down an W in-
tegral equation similar to our Eq. (8a). Their equation
for the D function differs essentially from our Eq. (8b) by
the addition of a CDD pole [7] which provides two addi-
tional parameters for fitting output resonances to input
poles. Such a computation corresponds to the input of an
elementary Higgs boson and from the bootstrap point of
view is devoid of predictive power.

We are also troubled by Hikasa and Igi's application of
the N/D formalism to the scattering of massless parti-
cles. The elastic scattering amplitude for massless parti-
cles does not have a gap between the right- and left-hand
cuts along the real axis of the complex s plane (or v

plane, which is equivalent). It is therefore not obvious
that one can write a dispersion relation such as our Eq.
(7) for the partial-wave amplitudes. The meaning of the
N/D decomposition is consequently obscure in that case.

Isaac Chappell (Florida A&, M), aided by an Argonne
N ational Laboratory student grant, independently
checked the calculations reported here. His help has been
invaluable. We are also indebted to Dr. Gordon Ramsey
for advising him. We are grateful to Cosmas Zachos for
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a number of helpful conversations. One of us (J.L.U. )
thanks Tom Kirk for the hospitality of the High Energy
Physics Division at Argonne National Laboratory. This
work was supported in part by the U.S. Department of
Energy, Division of High Energy Physics, Contract No.
W-31-109-ENG-38.
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