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Classical Scaling of Nonclassical Stability in Microwave Ionization of Excited 3d H Atoms
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At each of three frequencies to/2tr =26.43, 30.36, and 36.02 GHz, we observe 3d hydrogen atoms with
certain principal quantum numbers no&) 1 to be more stable against microwave ionization. Which nos
are more stable differs for each co. Even when the enhanced stability is not found in 3d classical calcula-
tions, we show that it scales classically: This quantal effect occurs at certain values of the classically
scaled frequency nt]to Our data give strong support for the enhanced stability being due to scarred 3d
wave functions for the strongly driven atoms.

PACS numbers: 05.45.+b, 03.65.—w, 32.80.Rm

Under active scrutiny are quantal systems whose low-

dimensional, deterministic classical counterparts are
chaotic. Many studies [1-3]have involved model systems
that are either time independent T (spectral problem) or
time dependent T (especially periodic, which are quasien-

ergy spectral problems) and either closed C (bounded) or
open 0 (dissociating or scattering). Here we focus on
real H atoms [4-6] driven by a linearly polarized electric
field whose amplitude F is comparable to the Coulomb
binding field F„.&

for initial principal quantum number
no))1. This is the paradigm for a periodically driven
quantal system whose classical TO counterpart is chaotic
[7].

In this Letter we demonstrate classical scaling of non-

classical eA'ects in microwave "ionization" and argue, for
the first time for driven 3d H atoms, that scarred wave
functions [3,8,9] play an important stabilizing role [9].
[d (D) refers to configuration- (phase-) space dimension. ]
Our raw data are ionization curves, each recording the
ionization probability P;,„vs F for a given no, co, pulse-
shape A(t), and cutoff n value, n„. Here "ionization"
means true ionization plus excitation to bound states
n )n„ [4].

Though periodic orbits (PO) are of negligible measure
in chaotic systems, they play a crucial role in semiclassi-
cal theories of their quantal counterparts [1-3,8]. For
example, in a phase space divided by Kolmogorov-
Arnol'd-Moser (KAM) tori (or cantori, broken KAM
tori) into regular and chaotic regions [3,10], nonlinear
trapping resonances form around stable PO. Since 1985
[I I], data from our laboratory have demonstrated that
these resonances can stabilize real 3d H atoms; we call
this effect classical local stability (CLS).

That wave functions may be associated with unstable
PO and other phase-space structures [12] was found in
numerical studies of classically chaotic models. Extend-
ing earlier work [13], Heller [8] computed configuration-
space wave functions for many excited states of the TC
stadium billiards and graphically found their densities
usually to peak along one or more (highly) unstable PO.
He coined the term "scar" (wave function scarred by
PO) to describe this surprising semiclassical phenomenon
[3].

Earlier 36.02-6Hz ionization data [4] from our labora-
tory showed that 3d H atoms can have nonclassical local
stability (non-CLS). For example, no =62 was harder to
ionize than its neighbors no=61, 63, but 3d classical cal-
culations showed no such effect. Within a 1d model of
the atom, Jensen et al. [9] found the non-CLS to be
caused by a scarred wave function prepared by the slow
turn-on of the 36.02-GHz amplitude.

We designed the present experiments to test with 3d H
atoms the scar-induced stability mechanism. Unable to
measure wave functions [14], we investigated whether the
non-CLS would scale classically. Therefore, we now dis-
cuss classical scaling [15].

Ignoring negligible spin and relativistic effects, the
Hamiltonian in atomic units a.u. (e =0 =p = I, where p
is the reduced electron mass) for the driven H atom
is S(t) =p'/2 —

~r~ +zA(t)F sin(tot+ca), where 0
~A(t) ~ I is slowly varying, and p is an initial phase
averaged by the experiment. [Because linear polarization
preserves the projection of angular momentum (quantal-
ly, ~m )) on the field axis, the motion is confined to a 5D
surface in the extended [10] phase space. Quantally, one
needs solutions of the 2d time-dependent Schrodinger
equation for each value of ~m(.] For an arbitrary con-
stant we choose to be no, under the similarity transforma-
tion [p =nop, r =r/no, t = t/no, ta =to], /it (t) becomes

S(t) =no'H(t) =p /2 —I/~r(+zA(not)Fsin(tot+ad) .

(I)
to=nolo=Oo is the scaled frequency [16], the ratio of to
and the initial Kepler orbital frequency; F=noF=—Fo is
the scaled amplitude, the ratio of F and F„.&.

When A(t) =const, the classical dynamics [9,15,17]
depends on Qo and Fo, not separately on no, co, and F.
The quantum dynamics is different because the similarity
transformation does not preserve the canonical commuta-
tion relations. For example, we interpret [x,p, ] =i h/no
as giving an effective h, h = h/no

For a given A(t)&const, exact classical scaling would
require varying the interaction time as no, i.e., for a fixed
number of initial Kepler periods. Experimentally, one
may demonstrate classical scaling if different values of
no, co, and F produce the same ionization behavior when
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FlG. I. Absolute value ~A(t)~ of the experimental pulse
shape, displaced vertically for clarity, for each of three mi-

crowave frequencies: Top, 36.02 GHz; middle, 26.43 GHz; bot-
tom, 30.36 GHz.

Qp and Fp are the same, even if /I (t) is not scaled exact-
ly. Figure 7 of [5] demonstrates this with np=74 3d
atoms in a 9.92-GHz field (Qp=0.611) and np=48 3d
atoms in a 36.02-GHz field (Qp=0.605); h was varied

by 54%.
The present apparatus differs only slightly from that

described previously [4,5]; here we emphasize important
details. A 14.6-keV beam of H atoms, initially in a uni-
form distribution of substrates belonging to a fixed no
value prepared by double-resonance laser excitation,
traversed a cylindrical microwave cavity [18] whose sym-
metry axis coincided with the beam axis. Holes through
the end caps for beam entry and exit aff'ected the cavity
eigenmodes. For each of three modes we determined to
5% accuracy [19] the amplitude F [18] seen by the
atoms. We numerically calculated [20], and experimen-
tally confirmed with a "bead-pull" resonance-frequency-
perturbation method [21], the spatial distribution of F.
In the atomic rest frame, each spatial distribution became
an /I(t). Figure I shows similar initial rising slopes and
ftnal falling slopes for all three /I (t) functions, but we ex-
pect microwave ionization at 30.36 GHz to be dominated
by the largest (center) antinode, whose shape (half of a
sinusoid) and duration [full width [width at amplitude)95%i = 182 [39j field oscillations] are quantitatively
similar to those in other H atom experiments with a
12-18-GHz waveguide interaction region [6].

As was described in [4], electron ionization and proton
quench signals, which differed mainly in their n cutoffs,
n,'. and nq, respectively, were detected simultaneously with
different particle multipliers and stored in a computer.
n,'. =114 was determined by an axial static-electric field
Fd, =3.4 V/cm (entirel. y outside the microwave field) be-
tween the exit endcap and a planar electrode placed 1.1

cm after the cavity. Other static fields downstream deter-
mined the value of nq=95. The static electric field inside
the cavity was 0.017 V/cm; it could ionize atoms with

FIG. 2. Measured "ionization" curves for n0=6S,69,70 3d H
atoms in a 26.43-GHz field, with the middle pulse shape shown
in Fig. l.
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FIG. 3. Scaled 10% thresholds vs scaled frequency. All cases
had the n cutoA n,

' = I l4 determined by a 3.4-V/cm static field.
Straight lines join points in each data set.

n & 440, far above n,'. and n,q.

In Fig. 2, np=69 (Qp=1.32) is significantly more
stable against ionization at 26.43 GHz than either neigh-
boring np value. At 30.36 and 36.02 GHz, respectively,
we observed similar behavior for np=66 (Qp=1.33) and
for np=62 (Qp=1.31).

From each of many ionization curves we obtained X%
thresholds, the amplitudes F(X) that produce P;,„=X%.
Figure 3 plots scaled 10% thresholds Fp(10) vs Qp for all
three frequencies as well as those obtained from a classi-
cal 3d Monte Carlo simulation [4] of the 36.02-GHz ex-
periment, including its A(t) and n,

' =114.. All results
show a local maximum near Oo=l, a nice example of
CLS reflecting the main classical nonlinear trapping reso-
nance. As will be discussed below, the less rapid falloff' of
the 30.36-GHz data just above Qp I is probably a result
of its very diff'erent A(t) function; see Fig. I. Its much
shorter near-peak-amplitude interaction time likely ex-
plains why the 30.36-GHz Fp(10) thresholds are sys-
tematically the highest measured.

The local maxima near 00=1.3 are the most prom-
inent example of non-CLS in Fig. 3. Even though it is
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absent in classical calculations, the non-CLS scales clas-
sically: At, just above, and just below Op=1.32, the
Fp(IO) values are quite close for 26.43 and 36.02 GHz,
which had similarly shaped A(t) functions. More sur-

prising is the large local maximum for 30.36 GHz; even
with its A(t) function, the non-CLS effect is preserved.
Similar remarks apply to another example of non-CLS
apparent in Fig. 3, just below Op=1.6. This is above
Qp= &, where there is a classical nonlinear resonance.

Note that overlaying unscaled plots (not shown here)
of F(IO) in V/cm vs np for the three frequencies shows
none of the detailed coincidences present in the scaled
plot in Fig. 3.

We now discuss our non-CLS data in the light of
scarred wave functions. Jensen et al. [91 linked the sta-
bility of np=62 in a 1d model H atom in a strong 36.02-
GHz field (Fp=0.05) to its wave function being dominat-
ed (98%) by one quasienergy eigenfunction prepared by
the slow rise in A(t). When projected onto Poincare sec-
tions in the 2D classical phase space, the Husimi distribu-
tion of this dominant eigenfunction was located outside
the main nonlinear resonance centered near Op=1 and
was concentrated in the chaotic region near an unstable
PO (hyperbolic fixed point) and associated stable and un-

stable manifolds [9]. It was a scar [3,8]. Neighboring
initial states, np=61, 63, were less stable because their
strong-field ld wave functions contained appreciable am-
plitudes of quasienergy eigenfunctions that connected to
much higher lying, more easily ionized atomic states.
These results [9] were for H atoms in a Id model.

It is not at all obvious a priori that there would be
scar-induced stability for real 3d H atoms. Though pre-
vious 2d and 3d classical calculations say nothing about
wave functions, they show [17] the following: (i) Fp(10)
values for 3d H atoms are usually well approximated by
the Id model for Op (3. Very-Iow-~m

~
orbits are

stretched into nearly 1d orbits and ionize at the lowest
amplitudes. (ii) I d calculations seriously underestimate
values of Fp needed to reach higher values of P;,„, to
which much higher-~m~ 3d orbits contribute. In addition,
some numerical calculations and an iterated (Kepler)
map showed [22] that a quantal dynamical localization
effect present in the 1d dynamics was preserved in 2d, at
least for Op between 1 and 2.5.

Let us assume that given np, tp, and A(t), X% ioniza-
tion thresholds rise monotonically with increasing ~m ~,

which is bounded by np —1. A calculation then shows
that each value of P;„„ is equal to the fraction f of atoms
with Im I

( Im, (f) I
= [2np. I [4np (I f) + I l ]/2.

For np=69, for P;„„=10%(f=0.1), ~m, .
~
=3, a small

value; for P;„„=80%(f=0.8), [m, .
( =38, a large value.

The enhanced stability of np =69 at 26.43 GHz for values
of P;„„up to at least 80% in Fig. 2 was also observed for
np=62 at 36.02 GHz and for np=66 at 30.36 GHz.
Thus, the non-CLS for Op=1.32 scales classically, even
for high P;„„values. Our data also show similar behavior
for Qp just below 1.6. 8'e interpret these results as

strong evidence for the stabilizing effect of scarred wave
functions in the driven 3d H atom: These wave functions
must "live" on structures in the 5D phase space. They
need to be found, visualized, and understood.

Looking in greater detail at Fig. 2, note that the
np =69 ionization curve starts to rise with the np =68,70
curves but then levels off at P;„„=5%between about 9
and I I V/cm. We infer that the strong-field wave func-
tion for n p =69 contained about a 5% admixture of
component(s) that ionized more easily than the dom-
inant, scarred component. Recall that two different
quantal Id calculations [9,23] found such a (2-3)% ad-
mixture for an np=62 1d model atom in a 36.02-GHz
field whose A(t) function was similar to the flattop one(s)
in Fig. 1.

Remarkably, that we observed similar =5% plateaus
(not shown) for np=62 at 36.02 GHz and np=66 at
30.36 GHz suggests classical scaling for this phenome-
non. Moreover, that the entire ionization curves for the
three cases were unaffected by increasing the cutoff from
n~=95 to n,'. =114 shows that the excitation was to final
states n ) 114. (It was probably true ionization [4].) For
other (non-scar-dominated) initial states, changing n, .

could produce a significant change in their "ionization '

curves.
For Id quasienergy states, Breuer and Holthaus [24]

found an approximate scaling relation that is broken by
quantal avoided crossings. As A(t) varies the amplitude,
how these avoided crossings are traversed (i.e., the
Landau-Zener mechanism) undoubtedly affects P;„„. Be-
cause they neglected the continuum, however, the calcu-
lations [23,24] said nothing directly about true ionization,
only about excitation and deexcitation. The calculations
also investigated [23] how quickly the A(t) function
would have to turn on for a ld wave function no longer to
be dominated by a stable, "continuously connected"
quasienergy state. For 1d np =62 at 36.02 GHz, the time
scale was about five field oscillations; for ld np=57 at
36.02 GHz, very near Op=I, where the main classical
nonlinear resonance ''s centered, the time scale was about
10 times longer.

Extrapolating these Id calculations [23,24] to 3d atoms
suggests why our 30.36-GHz data differ in details from
the 26.43- and 36.02-GHz data: The three A(t) func-
tions in Fig. 1 have comparable initial turn-ons and final
turn-ofl's, but for 30.36 GHz, A (t) has steeper slopes near
F=O on either side of the center antinode.

Addressing more details, the 36.02-GHz ionization
curves (not shown) for the trio np=56, 58,62 are nearly
identical over their whole range. The same is true for
n p

=61,65,69 at 26.43 G H z and for n p
=59,62,66 at

30.36 GHz. Because the lower two members of each trio
straddle the Qp =

1 resonance, their strong-field wave
functions are presumably associated with an Einstein-
Brillouin-Keller-type quantization on invariant tori [3,9].
The highest member is the scarred state at Op=1.32.
That all members of each trio have the same ionization
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curve reinforces the picture that the 3d quantization of
the scarred state is, indeed, associated with the classical
Op =

1 resonance. Conversely, we do not yet know the
corresponding association for the non-CLS just below
o =1.6.

Experiments at Pittsburgh with np=80, 86 and cp/2tr

between 12 and 18 GHz did not find non-CLS near
Op =1.3; see Fig. 2 in [6]. The cutoff there, n, = I 5np. ,
was similar to the present n,'. Given the non-CLS in our
30.36-GHz data with 3d atoms, we think it unlikely that
their nonobservation of non-CLS is due to their A(t)
function or quasi-2d substrate distribution [6]. There
was, however, an F, =0.87. V/cm static field inside their
microwave interaction region [6]. No calculations eval-
uating its effect on the scar stability have been reported,
but the effect of an F,. on the 1d spectrum of quasienergy
states has been discussed [24]. Our preliminary results
(not shown) suggest that a static field of I V/cm affects
the non-CLS of np=69 in the 26.43-GHz field. The
effect of extra perturbations (static fields, other frequen-
cies, and, especially, noise) on the scarred states clearly
needs to be investigated.

Finally, for non-CLS at Op near 1.3 (and 1.6), we have
varied 6 by only 11%. What will happen for much wider
variations? For, say, an np =2 H atom in an optical laser
field, we would not expect non-CLS: The effective 6
should be too large for scarring. For, say, an np=124
atom in a 4.50-6Hz field (and a much higher n, ), ft.
would be 2 times smaller than at present; one might ex-
pect scarring to affect two neighboring values of np.

However, this cannot continue to the n p ~ limit: The
3d classical calculations in Fig. 3 show no enhanced sta-
bility near Op=1.3. The enhanced stability here is a
semiclassical effect that must disappear in the deep
quantal limit and in the classical limit [25]. [t is a splen-
did example of the subtlety of quantum chaology [26].
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