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Numerical tests of a novel semiclassical quantization rule are carried out for three strongly chaotic

systems: the hyperbolic billiard, Artin s billiard, and the Hadamard-Gutzwiller model. The results

demonstrate that this novel rule is very effective and capable to generate sensible approximations to the

quantal energy levels.
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One main goal in the study of quantum chaos during
the last few years has been to find an eA'ective quantiza-
tion rule for strongly chaotic systems as a substitute for
the well-known WKB method for integrable systems and
its multidimensional generalization, the Einstein-Bril-
louin-Keller (EBK) quantization rules. (For a com-
prehensive review, see the recent textbook by Gutzwiller
[I].) Nearly all semiclassical approximations which have
been applied to classically chaotic systems have started
from Gutzwiller's periodic-orbit theory [1,2]. Recently,
there have been several exciting developments. Among
them are the derivation and application of a smoothed
version of the Gutzwiller theory [3-6], the proposal of a
Riemann-Siegel look-alike formula [7], a rule for quan-
tizing chaos based on dynamical zeta functions and their
associated functional equations [6,8-10], and a quantiza-
tion condition derived from a quantum version of a classi-
cal Poincare map [11].

In this Letter we study a novel semiclassical quantiza-
tion condition [12] that is based on a semiclassical repre-
sentation of the spectral staircase JV(E) =g„-~e(E
—E„). [The systems to be discussed possess only a
discrete energy spectrum [E„], and JV(E) counts the
number of energy levels below E. e(E) is the Heaviside

step function. ] The quantization condition reads

cos[trJV,„(E)j =0,

where JV„(E) denotes a semiclassical approximation to
JV(E). Equation (1) is equivalent to the condition
JV,,(E) =n -—2, n =1,2, . . . . In comparison with the re-

cent developments mentioned above, the quantization rule

(I) has the advantage that it is much simpler. For exam-

ple, no pseudo-orbits [6-9] have to be calculated and no

functional equation is required. Moreover, it is very

closely related to the original formulation of the peri-
odic-orbit theory. Most importantly, it yields surprisingly
good results as our numerical applications shall show.
The reason for the success is that it is not necessary that
the whole staircase be approximated well by its semiclas-
sical approximation. If only the semiclassical curve goes
through the middle of the steps of the staircase function,
the quantum condition (I) already yields the correct en-

ergies.
In order to formulate the quantization condition in a

convergent form, one has to start with a smoothed trace
formula [3,4]. We are thus led to consider a smoothed
version [12] of the spectral staircase which is given here
for billiard systems (e& 0):

JV,(E) =—g erf +erf
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(This formula can be considered as an integrated version
of the Gaussian-smoothed level density [3,4].) Here
E(p) =p /2m, and p„=(2mE„)'t denote the momenta
corresponding to the energy eigen values E„of the
Schrodinger equation. JV(E) is the mean spectral stair-
case. In the limit e 0, JV.(E) approaches the spectral
staircase JV(E). The double sum on the right-hand side
runs over all primitive periodic orbits, which are denoted
by y, and their multiple repetitions k. l„ is the length of a
primitive periodic orbit, and M~ is its monodromy matrix.
v„ is the maximal number of conjugate points along a
periodic orbit plus twice the number of reflections on
those parts of the boundary, where Dirichlet boundary

conditions are required. In formula (2) it is assumed that
v„ is an even number. If there exist periodic orbits along
the boundary, Eq. (2) has to be slightly modified in order
to take into account also contributions of these orbits (see
[13]).

Inserting Eq. (2) into Eq. (1) leads to a quantization
condition which contains absolutely convergent terms
only. Although, in general, only an evaluation of the
smoothed staircase is well defined, practical applications
show that it is often possible to apply the quantization
condition for a=0. One possible explanation for this
might be that the periodic-orbit sum is conditionally con-
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vergent, because the orbits contribute with different phase
factors exp[ —itrkv„/2] to the sum over orbits. (For a dis-
cussion of the convergence properties, see [4,6,8,9, 12,
13].) In the case that the periodic-orbit sum is divergent,
good results are often obtained as a consequence of the
fact that not too many orbits are included in the sum and
that indications of the divergence show up late. In gen-
eral, however, the divergent sum has to be regularized [6]
as, e.g. , in Eq. (5) below.

An evaluation of the semiclassical formula (2) for a=0
is shown in Fig. I for the hyperbolic billiard [5] (desym-
metrized, even symmetry), which is described in more de-
tail below. The discontinuous curve represents the stair-
case as obtained from a numerical solution [14] of the
Schrodinger equation, while the smooth curve has been
computed from the right-hand side of Eq. (2). As can be
seen, the steps of the discontinuous function A'(E) are
well approximated by the continuous curve at low ener-
gies. At higher energies the approximation slowly gets
worse due to the limited number of periodic orbits which
are included in the sum, but the semiclassical approxima-
tion still describes very well the mean behavior of the
staircase function.

In the following we shall present a test of the quantiza-
tion condition (I ) by evaluating it for three strongly
chaotic systems: the hyperbolic billiard [5,13], Artin's
billiard [9], and the Hadamard-Gutzwiller model [3,15].
All three systems are billiards, but with very different
properties. The first system is a plane bi!liard, while the
other two can be considered as billiards on a surface of
constant negative curvature. For billiard systems, it is

convenient to use a scaled topological entropy T: which is

energy independent. The number of periodic orbits y

with a length l, below a value l is given by, ni(l)
—ex pI r I]/r I, I — ee. In the following, dimensionless
units are used with 6 =2m =1.

The first system to be discussed is the hyperbolic bil-

liard [5,13] whose boundaries are the x axis, the y axis,
and the hyperbola y = I/x. The mean spectral staircase
has the following asymptotic expansion [16,17]:

JV (E) = E lnE+ E+ ME+ c+, E—1 a b+
8x 8z 8z

(3)

Here a =2(y —In2tr) and b+ =242+4tr't /I ( —, ) (y de-
notes Euler's constant). The last term in Eq. (3) has
been estimated numerically [13]: c+ = —0.173. The +
sign refers to the partial spectrum corresponding to wave
functions which are even with respect to reflection on the
straight line y=x. Numerically, this system has a topo-
logical entropy of r =0.593.

The quantization condition (I ) has been evaluated us-

tng (2) for &=0 and taking into account all orbits with
length l, ~ 25, which amounts to a total number of
101265 orbits with different lengths. Figure 2 shows
the result of an evaluation of condition (I) in the en-
ergy range 200& E &400. As can be seen, there is
good agreement between the zeros of the function
cosItrJV, +,. (E)] and the "true" quantum energies [14],
which are marked by triangles.

The second system is Artin's billiard [9]. It describes
the free motion of a point particle on a noncompact
Riemann surface with constant negative curvature. On
the Poincare upper half plane 'P =Iz =x+iy, y) 0] en-
dowed with the measure dxdy/y'-, the billiard region is

identical to the domain D = [!z! ) I for —-' & x & 0 and
!"!) I

I'or 0» x» —. ] with periodic boundary condi-
tions. For this system the Gutzwiller trace formula is an
exact relation between the quantum-mechanical energies
and the classical orbits, since it is identical to the Selberg
trace formula [18,191. Here we consider a desymmetri-
zation of the system, which is obtained by introducing ad-
ditional Dirichlet boundary conditions along the line
x=0. Relation (2) is valid with an equality sign with
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FIG. 1. The spectral staircase JV+(E) and its semiclassical
approximation JV,+,- (E) for the hyperbolic billiard. JV,+,- (E) was

evaluated by Eq. (2) with ~=0 using all periodic orbits with

length l„(25.

FIG. 2. The function cos[~A',+,. (E)j for the hyperholic hil-
+liard. JV,,-(E) was evaluated as in Fig. 1. The triangles mark

the positions of the "true" quantum-mechanical energies.
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FIG. 3. The function cos{trÃ (E)j foiiEi& for Artin's billiard.
. ii' with a=0 and taking into8',, (E) was evaluated using Eq. (2) with

p o o gacco
' ' ' '

» len th I (19.360. . . . The tri-
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'
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energies.

FIG. 4. The function cos{xÃ,"(E)] for the Hadamard-

62
od I. Ã (E) was . evaluated using Eq. 5 an tak-

t account all periodic orbits with length l„(ing into accoun
e "tru " uantum-The triangles mark the positions of the rue q

mechanical energies.

E(pr =p 4. ej= + —'. Th mean spectral staircase has the fol-
lowing asymptotic expansion [20]:

1 1 31n2 —2
JV (E) = E — JE lnE—

24 4z 4z

function:

1 sin(pkl„)
k sinh(kl„/2)

+ + +O(E ' ') . (4)
144 32tr JE

The scaled topological entropy of this systemm and of the
Hadamard-Gutzwiller model) is exactly known to be
r = I.

An evaluation of the quantization condition (I) for

1500& E (2500. Again there is very good agreement
b t the zeros of the function cos~z ~ ...

uted btrue quantum energies which have been compu e y

xam le of theThe third system to be discussed is an examp e o e
Hadamard-Gutzwi lier model g3, ,[ 6 12 15]. It describes
th f motion of a point particle on a compact Riernann
surface with constant negative curvature and ge
~ 2. Again Gutzwiller's trace formula |s exact since it

is identical to the Selberg trace formula [18]. Here we
consi er a g

'd generic Riemann surface wit genus g =2
h erbolicwhich can be represented by an asymmetric hyper o ic

octagon in the Poincare d&sk.

The Hadamard-Gutzwiller model differs from the pre-
two systems in that all numbers v~ are equal to

zero. For that reason all periodic orb&ts contri u e
sum over orbits with the same sign, and the region of con-
ditional convergence in the complex energy plane is iden-
tical to the region of absolute convergence.e. As a result,
the periodic-orbit sum (2) diverges for @=0. However, it
is possible to use q.I E . (2) for e =0, if one regularizes the
sum by introducing a cutoff L and adding a regularize

the following semiclassical approximation to the staircase

(5)
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w ere =p 4h E p + —,
' and Ei(z) =f dte '/t. -In this for-

a finite number of periodic orbits with lengt „~ is

en asymptotically by [12] A(E) =E —-', + 0(JE
~ ~

as been evaluated forThe quantization cond&tron

the Hadamard-Gutzwiller model in the energy range
I (E ( 14 using (5) with L =11.96242. . . . As is seen

ement isproxirnations to the true eigenvalues, but the agreem
h th two previous cases. In act, a

r levels wouldbetter resolution of even the lowest energy levels wou

much lar er number of periodic orbits. To
in Fi . 5 for the threedemonstrate this point, we show in Fig. or e

systems an estimate o e nuf the number JV(l) of periodic orbits
which is required to get a good approximation to t e rst

1 1 Th results depend very sensitively on
al entro an the

billiard (dotted line) constitutes the most favored case, it

Fi . 5 that the number of relevant perio ic
orbits grows extremely fast in the case o h H dof the Hadamar-
Gutzwiller model (solid line). The hyperbolic billiard
(dashed line) lies between these two extremes, hes but the sit-
uation is by far better than for the Hadamard-Gutzwiller
mo el.

In this Letter we have studied the semiclassical quanti-
zation con it&on, w io' (I ) h'ch is based on the continuous ap-
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FIG. 5. Estimate of the number N(l) required to determine
semiclassically the first Af energy levels of Artin's billiard (dot-
ted line), the hyperbolic billiard (dashed line), and the
Hadamard-Gutzwiller model (solid line).
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