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Intermittent behavior originating in a point of discontinuity in 1D maps is investigated. Studying the
duration of the laminar phase, we find a logarithmic dependence of the average laminar length (l) on the
control parameter t. in contrast to the three conventional types of intermittency characterized by power-
law scaling. Analytical considerations give the relation (I) =log(e)/log(s)+P (where s is the "slope" at
the point of discontinuity). Numerical data obtained from a relaxation oscillator model are in good
agreement with these results.

PACS numbers: 05.45.+b

The intermittency route to chaos is characterized by
the intermittent change between long, almost regular
(so-called laminar) periods and shorter chaotic bursts.
The scaling properties of the laminar lengths were studied
for the first time by Pomeau and Manneville [1,2] in the
Lorenz model. The intermittent behavior originates in

the influence of a fixed point xI that becomes unstable at
a critical control-parameter value r, . For higher values
of the control parameter intermittent behavior is ob-
served. The laminar behavior takes place in the vicinity
of xi in phase space. After the system has escaped from
the influence of xI, chaotic behavior occurs until the sys-
tem again reaches the laminar region (is reinjected).

When studying intermittency the properties of the lam-
inar period are normally treated independently of the
mechanism that generates the chaotic phases. The aver-

age length of the laminar phase (l) decreases as the con-
trol parameter r increases. One finds the scaling relation
(l) ee e ', where e is the distance e =r r, from the criti-—
cal control parameter. Pomeau and Manneville distin-
guish between three different types of intermittency, de-
pending on the way the fixed point becomes unstable, i.e.,
in the way the eigenvalues of the map cross the unit circle
at r„[3]. This classification uses the fact that the corre-
sponding Poincare mapping is differentiable around the
fixed point.

Properties of mappings that are not difi'erentiable
around the fixed point, however, are not covered by this
classification, even though it is not only "exotic" systems
[4-11] that show discontinuous mappings. In this kind of
map a fixed point can lose its stability in a fourth way,
that is, by colliding with a point of discontinuity. At the
critical control parameter a=0 this point is stable in one
direction of the 1D phase space and unstable in the other;
for higher values of e laminar behavior can be observed in

the vicinity of the formerly stable part.
In this Letter we study the laminar lengths of intermit-

tent time series in such discontinuous maps. In order to
do this, we discuss as an example the laminar lengths
generated by quadratic maps with one point of discon-
tinuity and a stochastic reinjection [12] into the laminar

(modulo I), where md(x) is a random number from the
interval [O, l], and A and B are chosen such that the rein-

jection takes place below the intersection of the function
fi(x) with the diagonal x„+i =x„. The shift parameters
a and b arrange the dependence of the parabola fi(x) on
the control parameter e; with decreasing e the value

fi( q)xapproaches the diagonal x„+i =x„[giving a fixed
point f(xd) =xd for e=0] and thus we set e=f(xd)
—xy. In principle, this could be achieved if a is kept con-
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FIG. 1. The considered mapping x„ii =f(x„)with a point of
discontinuity at xz =2e and the parameters e=O. l, s =0.5. Ad-
ditionally, the path of one iteration is shown; the iteration is
reinjected stochastically into the laminar region after passing
Xd.

region. The results are compared with numerical data
obtained from a model of an electronic relaxation oscilla-
tor [9].

For the numerical simulations we construct a mapping
x„+i =f(x„) that changes from a quadratic iteration
fi(x) to a random reinjection fq(x) at a point of discon-
tinuity xq (see Fig. I ); above the point xd the map is
differentiable, and for x & xd the iterations are reinjected
randomly into the smooth region. Such a map may read

rf i (x) = (x —a) +b for x )xd,
fq(x) =A md(x)+B for x (xd

f(x) ='
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stant and only the vertical shift b is varied according to e.
For our numerical simulations we use a more suitable
choice of a and b according to the following conditions:
The "slope" df ~ (xz)/dx at the point of discontinuity x,& is

adjusted independently of e, i.e. , df~(xq)/dx =s. Addi-

tionally, for numerical reasons, it will be appropriate to
choose f(xd) of the same order of magnitude as
Choosing f(xq) =e determines the position of the discon-

tinuous point as xd =2m. The two conditions can be
fulfilled by setting the dependence of a and b on the con-
trol parameter t. and on the slope s to
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a =(4e —s)/2, b =e' —(2e —a) =e —s /4. (2)

log (2e) —log (xp)
log(s )

(3)

Assuming that the reinjection takes place randomly in a

constant interval around xo, in the limit of t. 0 we can

directly use the real number I as an approximation of the

behavior of the average laminar length (I),

(I) = log(e)+P(s),1 (4)
log s

with some offset value P. Thus the lines of Fig. 2(a)
should have the slope I/log(s). We have compared this

dependence on s with the numerical data obtained from
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We want to emphasize that this specific form of the map-

ping is only one example of a large class of mappings
with similar properties. Choosing this form has the ad-

vantage that the range accessible to numerical simulation
is very large due to the fact that for small values of e no

additional offset has to be handled during the iteration.
Thereby it becomes possible to use as the whole range of
magnitude for the control parameter that which is

covered by the representation of numbers in the computer
[13]. It should also be mentioned that the reinjection can
take place anywhere in the basin of attraction of xd, even

though the duration of the laminar period for small

values of e depends almost entirely on the map in the vi-

cinity of x,i.
We iterate this map for different values of the control

parameter t. averaging the number of iterations I in the
laminar region over 500 reinjections. The result shows

clearly that there occurs no power-law dependence of the

average laminar length on the control parameter as would

have been expected for the conventional types of intermit-

tency. As shown in Fig. 2(a) we observe a logarithmic

dependence of (I) =alog(e)+P for nonzero values of the

slope s, where the factor a decreases with the slope s.
This logarithmic dependence can be understood if we

approximate the behavior of the simulated quadratic

mapping by a linear map of the form f(x) =sx, and cal-

culate the number of iterations that it takes to pass the

channel and to reach xd =2t. . Starting the iteration with

some initial value xo we find the nth iterate to be x„=s"x
and therefore we can calculate the number of iterations in

the laminar region from the integer part of
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the original quadratic map (I) for several slopes s in the

range jO, I [ and found that the results are in good agree-
ment with (4).

It has to be mentioned that this analytical result holds

only if the slope s is constant and the reinjection takes
place around a constant value xo. If these values are a
function of the control parameter e the dependence s(e)
and xp(e) would be superimposed on the relation (3).
However, normally this superimposed function will not

lead to a power-law dependence of (I) on e.
The relation (4) is undefined for s =

I and 0. In the

case of s =1 we can use a similar linear treatment to find

(I) =as '+P. For s =0 we have to use a nonlinear an-

satz. We can consider for instance the map f(x) =x
and ask how many iterations n are necessary such that
x„~0. This is equivalent to the question of when

f(x) =x-' reaches e and thus yields

log(e)
log

log(2) log(xp)
(s)

I

12

parameter log( —log(e))

FIG. 2. The average laminar length for diferent slopes s of
the map. (a) (I& is plotted vs log~p(e). The linear shape of the
resulting plot for nonzero slopes s indicates that the relation (4)
is true. (b) (Il is plotted vs log](j[ log~a(e)] for s =0 verifying
the relation (6).
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or again more generally

(I) =Clog[ [og(e)]+P. (6)
20

This relation is checked in Fig. 2(b) where (I) is plotted
versus log[ —log(e)] for the numerical data obtained
from our original map (1) showing very good agreement
with (6).

In principle a piecewise linear treatment that results in

(4) is applicable for all kinds of maps that have a nonzero
first-order Taylor expansion [14] around the fixed point,
as, e.g. , the considered map for s&0. For s=0 (where
the first-order expansion vanishes) we had to use a quad-
ratic ansatz that results in (6) where the factor 1/log(2)
in (5) represents the second-order approximation.

In order to check that the described type of intermit-
tency cannot only be found in constructed mappings but
also in physical systems, we compare our results to the re-
sults obtained from the numerical simulation of a relaxa-
tion oscillator. This oscillator may be realized by means
of a thyratron circuit [9]. The corresponding map turns
out to be a concatenation of a circle map and an inverse
circle map that can be constructed from the underlying
differential equation [11,15]. For the considered parame-
ters a 12-cycle becomes unstable due to intermittency. In
the inset of Fig. 3 an enlargement of the corresponding
multimap f' (x) is plotted. We find a situation that is

quite similar to that of Fig. 1, where a fixed point has
vanished due to its collision with a point of discontinuity.
%'e iterate this mapping for different values of the control
parameter (driving voltage U) and plot (Fig. 3) the re-
sulting laminar lengths versus the logarithm of the dis-
tance t. =U —Uo, where Uo is the critical control parame-
ter. Again we observe that the relation (4) is reproduced
very well.

Even though a discontinuous map can be approximated
by a continuous map with a high derivative at xy, the de-
scribed behavior is in fact different from type-I intermit-
tency. The continuous approximation will show the
power-[aw behavior of (I) in the limit e 0. However,
for larger length scales of e—beginning with an e value
that depends on the degree of approximation —one finds
again the reported logarithmic behavior. In the limit of
the nondifferentiable mapping the type-I power-law be-
havior vanishes and only the logarithmic behavior
remains.

V/e would like to mention that in some cases the dis-
tinction between the case of power-law scaling and the
logarithmic dependence of (I) on e might take special
care. On the background of this investigation one cannot
assume a priori a power-law behavior of the laminar
lengths if the properties of the underlying Poincare maps
are unknown. This might be especially important in the
analysis of experimental data, where often only a few or-
ders of magnitude of the control parameter can be ana-
lyzed and the exact value of the critical control parameter
r, . is not known. A small error hr in the estimation of r,
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FIG. 3. Results for the thyratron relaxation oscillator. Aver-
age laminar length (I) for different values of the control param-
eter. Again the result of (4) can be confirmed. Inset: A part
of the multimap f' (x) vs x, sh-owing a situation quite similar
to the constructed mapping in Fig. 1.
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