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A growth model is presented to simulate the corrosion pattern in pitting corrosion in three dimensions.
The pitting corrosion is controlled by diffusion of anions toward the metal surface. The computer simu-
lation is performed to study the scaling structure of pit-size distribution in the corrosion pattern. It is
shown that a transition occurs in the overall corrosion pattern from disconnected pits to a percolating
structure at the percolation threshold. Below the percolation threshold, it is found that the pit-size dis-

tribution n, (1) obeys the dynamic scaling n, (1) =1

s T f(s/r7) (£ =0.93+0.03, z=1.43+0.02, and

w =0.66 =0.02), where the cutoff function f{(x) is a constant for x < |.

PACS numbers: 81.60.Bn, 05.40.+j, 68.90.+¢

Metallic corrosion is an important field of materials
science. Pitting corrosion is a major cause of failure of
metal structures. The corresponding corrosion patterns
observed experimentally display a complex ordering on
many length scales. The corrosion is induced by localized
dissolution of passivated (oxide-covered) metal in the
presence of a solution of certain anionic species [1]. The
propagation of corrosion is generally thought to occur as
follows. Anions such as chloride are concentrated into
the corrosion pit from the external solution. The gradient
in solution composition keeps the metal surface inside the
corrosion pit in an active (dissolving) state. The local en-
vironment is acidified owing to hydrolysis of the dissolv-
ing metal ions. Recently, the formation of pitting corro-
sion of binary alloys in two dimensions has been investi-
gated with the use of computer simulation by Williams et
al. [1]. They have shown a mechanism for the triggering
of pitting corrosion of stainless steels. Sieradzki et al. [2]
have also suggested a similar computer model which is
based on the Eden model on the percolating cluster.
Their model does not take into account the diffusion of
anions and the oxide-covered metal surface, and there-
fore, in their model, corrosion pits are not localized. The
pit-size distribution does not indicate a dynamic scaling
law except for the percolation threshold. Costa, Sagues,
and Vilarrasa [3] found that the overall structure of the
corrosion-pit profile can be described in terms of fractal
geometry in the steel pitting corrosion experiment. They
also showed that the pits observed on corroded surfaces
are small or large in diameter, drawing a variety of sizes
and shapes. However, until now, there have been no
simulations for analyzing the pit-size distribution of the
corrosion pattern on an oxide-covered metal surface.
Open questions include the scaling behavior of the pit-
size distribution in the corrosion pattern.

Recently, there has been increasing interest in a variety
of nonequilibrium aggregation and growth models such as
the diffusion-limited aggregation (DLA) model and the
cluster-cluster aggregation (CCA) model [4-10]. A
variety of computer simulations have been carried out to
investigate the relationships between the cluster geometry
and growth mechanisms. The DLA model presents a
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prototype of the pattern formation of diffusive systems
including electrochemical deposition, crystal growth,
viscous fingering, dielectric breakdown, chemical dissolu-
tion, and bacterial colonizing. The CCA model presents
the prototype of colloidal aggregation, smoke aggrega-
tion, and droplet coalescence. In this model, there is dy-
namic scaling of the cluster-size distribution. Until now,
very few investigations of pitting corrosion have been per-
formed from the point of view of growth models. Pater-
son [11] called the DLA model of decay the anti-DLA
model. The anti-DLA model has attracted little attention
because the interface becomes stable in the decay process.
Sahimi and Tsotsis [12] and Sahimi [13] have studied the
disaggregation process on the percolating cluster by using
the diffusion-reaction-consumption (DRC) model. They
have found the dynamic scaling law of the fragment dis-
tribution. Pitting corrosion cannot be simulated by the
diffusion-reaction-consumption model since it does not
take into account the oxide-covered metal surface.

In this Letter, we present a growth model for the corro-
sion pattern in the pitting corrosion of an oxide-covered
metal. We simulate the corrosion pattern formation by
using the growth model, analyzing the scaling structure
of the pit-size distribution in the corrosion pattern. If the
consumption of the metal is continued for a long enough
time, corrosion pits (finite clusters) with a wide variety of
shapes and masses appear. This distribution in the num-
ber of pits (clusters) is somewhat similar to the cluster-
cluster aggregation process [9] and the disaggregation
process of reactive porous media [12,13]. There are,
however, significant differences between the phenomenon
studied here, that of CCA, and that of DRC. The system
in CCA is conserved (i.e., the total number of particles
does not change), and a large fractal structure is eventu-
ally formed. The phenomenon in DCR is dissipative in
the sense that the density of occupied sites decreases with
time and eventually vanishes. On the other hand, in pit-
ting corrosion, corrosion pits nucleate continuously and
coalescence between pits occurs simultaneously. Despite
these differences, we show that a dynamic scaling holds
for the pit-size distribution. The different mechanism of
the pit formation process from the CCA and DRC mod-
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els results in the different values of the scaling exponents.

First, we present the basic equation and the boundary
conditions in corrosion pattern formation. In the pitting
corrosion, anionic species diffuse toward the metal sur-
face. After the diffusing anions land on the metal sur-
face, the metal dissolves into solution as a result of hydro-
lysis of the metal ions. This process is controlled by the
diffusion of anions. The corrosion pattern formation is
described in terms of the anti-DLA with an appropriate
boundary condition. Figure 1 shows a schematic repre-
sentation of the pitting corrosion. The concentration C of
the diffusing anions satisfies the Laplace equation under
the quasistationary approximation,

ViC=0. 4))

The metal surface is covered with oxide except within the
corrosion pit and the oxide-covered metal surface only
dissolves with difficulty. We define a dissolution proba-
bility P, to represent the tendency of the oxide-covered
metal surface to dissolve. When the diffusing anion lands
on the oxide-covered metal surface, the metal dissolves
into solution with probability P, and the diffusing parti-
cle reflects from the metal surface with probability
1 —P,. Then, the boundary condition on the metal sur-
face except for the corrosion pit is given by

(1 —P4)8C/3z — P,C =0

on the oxide-covered metal surface , )

where 9C/0z is the derivative along the outward normal
at the flat metal surface. In general, the dissolution prob-
ability P, is expected to be sufficiently small. On the oth-
er hand, the metal surface inside the pit dissolves easily.

diffusing anions

z [

corrosion pits
ralive

®
oxide-covered surface

metal

FIG. 1. Schematic representation of corrosion pattern for-
mation on the oxide-covered metal surface. The anions diffuse
toward the metal surface. When a diffusing anion lands on the
oxide-covered metal surface, the metal component is removed
with a small dissolution probability P;. The metal component
on the surface inside the corrosion pit is removed with probabil-
ity 1.

On the surface of the pit, we assume that the dissolution
time of the metal is significantly shorter than the dif-
fusion time of anions. Then, the boundary condition is
given by

C =0 on the surface of the corrosion pit . 3)

The concentration far from the metal surface remains
constant,

C=Co atinfinity. 1)

We consider the simulation of the corrosion pattern
formation on the oxide-covered metal surface satisfying
Eq. (1) with boundary conditions (2)-(4) (see Fig. 1).
The diffusive particle governed by the Laplace equation
(1) can be simulated by using an isotropic random walk.
The simulation is carried out with use of a simple cubic
lattice. We consider a subset of the cubic lattice enclosed
by a cube with 100x100x 100 (x,y,z) units. We start
out with a cube of metal (100x100x%50) with a flat sur-
face positioned at the bottom of a cube (see Fig. 1). The
metal with a flat surface is covered by an oxide. The lat-
eral boundary is periodic. Particles are introduced one at
a time at a randomly chosen point on the upper boundary
(x,y,100). Each particle performs a pure random walk
resulting from diffusion. The particle continues to move
until it reaches a point adjacent to surface sites of the
corrosion pit, or until it reaches a point adjacent to the
oxide-covered metal surface, or until it reaches the upper
boundary. When the particle reaches a point adjacent to
surface sites of the corrosion pit, the surface sites of the
pit are removed. When the particle reaches a point adja-
cent to the oxide-covered metal surface, it is reflected
with probability 1 —P, and the oxide component is re-
moved with probability P,. When the particle reaches
the upper boundary, the random walker is annihilated.
We repeat the above procedure. The corrosion pattern is
developed until the number of particles removed from the
metal reaches 14000. Figure 2 shows the time evolution
of corrosion patterns in the overall picture for P;=0.01.
We note that for a sufficiently small P, the number of
pits increases with P, but the scaling property does not
change. Figures 2(a)-2(d) indicate, respectively, the
overall pictures of corrosion patterns with ¢t =2000, 6000,
8000, and 12000. Here, we define the time ¢ as the parti-
cle number removed from the metal. The corrosion pat-
terns obtained from the simulation display a complex or-
dering on many length scales. The size of the corrosion
pit increases with time t. When the area of the corrosion
pattern reaches the percolation threshold, the corrosion
pit percolates over the entire system.

We study the scaling structure of the corrosion pattern.
Figure 3 shows the log-log plot of the mean pit size S(¢)
against ¢. Below the percolation threshold the mean pit
size S(¢) scales as

Z.\‘:"I § 2"»‘

S = X2 sn

=1 (z=1.43+0.02), (5)
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FIG. 2. Overall pictures of corrosion patterns for P4 =0.01 obtained by simulation. (a) Corrosion pattern at t =2000, (b) corro-
sion pattern at t =6000, (c) corrosion pattern at ¢ =8000, (d) corrosion pattern at ¢ =12000.

where n,(t) is the pit-size distribution function. When
the time ¢ approaches the percolation threshold 7.
== 10000, the mean pit size deviates from the power law.
Figure 4 shows the log-log plot of the number density
p(t) against t. The number density p(¢) scales as

p(l) =ZS”; ~1 —w+Q2—1):

s=1

[—w+(Q2—1)z=0.87%0.02]. (6)

The mean pit size diverges faster than the number densi-
ty. This means that smaller pits gradually die out, form-
ing larger pits. Figure 5 shows the log-log plot of Xsn,
against the number s of particles in the pits for fixed
times ¢=2000, 4000, and 6000. The quantity Xsn,
scales as

Y sno~s2"F (2—1=1.07+0.03). )
s=1

These observations can be well represented by the scaling
assumption [14]

n(t)=1t""s " f(s/t7), (8)

w=0.66+0.02, r=093%0.03, and z=1.43%0.02,
where the cutoff function f(x) is approximately a con-
stant for x <1 and decays faster than any power law as
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In order to give direct evidence for the cutoff
function f(x), a log-log plot of %% ~'97(Xsn,) against
1 ~'"%5 is shown in Fig. 6. It is found that the data col-
lapse. The data determined for various times fall onto a
constant line between the lower limit (¢t ~'*s=3
x107%) and the upper limit (t ~'"*s=6x1077). The
lower limit corresponds to s =235 for 1= 1000 and the
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FIG. 3. The log-log plot of the mean pit size S(1) against ¢.
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FIG. 4. The log-log plot of the number density p(r) against
t.

upper limit corresponds to s = 100 for ¢t = 1000. In the
range that the mean cluster size and the first moment of
the size distribution can scale, the cutoff function f(x)
becomes a constant.

The data collapse supports the claim that the proposed
form for the size distribution is correct and it obeys dy-
namic scaling. The term ¢ ~" corresponds to a process
typical for corrosion patterns; the pits which are much
smaller than s/t gradually die out, forming larger pits.
The characteristic cluster size is determined by the
denominator ¢°. The scaling form (8) corresponds to that
of cluster-cluster aggregation. The exponent w=0.66 is
much smaller than w=1.7 [14] of the two-dimensional
diffusion-limited CCA. This is due to supplying new cor-
rosion pits. In the CCA model, the cluster number de-
creases with time by collapsing under the constant num-
ber density. However, in our model, new corrosion pits
are supplied at some rate and each pit grows by both
three-dimensional diffusion and collapsing. The dynamic
exponent z =1.43 agrees with z=1.4 [14] of the two-
dimensional diffusion-limited CCA. This means that the
growth rate of a single pit is nearly equivalent to that of
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FIG. 5. The log-log plot of X sn, against the number s of
particles in the pits for fixed times ¢t =2000, 4000, and 6000.
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FIG. 6. The log-log plot of 1%%s ~'97(X sn,) against t ~'4%.
The data determined for various times fall onto a constant line
between the lower limit (r ~'**s = 3x10 ~*) and the upper lim-
it (¢ 7"y =6x1077).

CCA. The growth rate at the edge of a single pit may be
governed by a two-dimensional diffusion on the oxide-
covered metal surface. Except for the casual agreement
of the exponent z, the exponents w and t are different
from those of the CCA model. The corrosion-pit model
belongs to a different universality class from the CCA
model.

In summary, we present a simulation model for corro-
sion pattern formation on the oxide-covered metal in
three dimensions. We find that below the percolation
threshold the pit-size distribution obeys a dynamic scal-
ing law.
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