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Complete Mode Locking in Models of Charge-Density Waves
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Mode locking in ac-driven charge-density waves is studied numerically in two and three dimensions,
using both continuous equations of motion and a cellular automaton model. As the system size is in-

creased, a complete devil's staircase of steps is approached. The fractal dimension of the set of gaps in

the staircase is found to be DO=0.75 ~0.04 (0.88~0.05) in two (three) dimensions in the automaton
model. The spectrum of singularities f(a) is calculated and is related to the dynamic critical exponent g
for the charge-density-wave depinning transition.
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Extended systems with many degrees of freedom, such
as charge-density waves (CDW's) and Josephson junction
arrays, are often seen to exhibit mode-locking behavior
experimentally [I]. Mode locking occurs when the sys-
tem locks into a rational multiple of the external drive

frequency. As a parameter is varied, the system goes
through a sequence of such Shapiro steps. This behavior
results from a collective phenomenon which is not yet
well understood.

A useful framework for the study of mode locking has
been developed and used in the context of nonlinear

dynamical systems with few degrees of freedom, such as
the circle map and the Frenkel-Kontorova model [2-4].
The winding number w as a function of some driving
force 0 exhibits a devil' s-staircase (DS) behavior: There
is a mode-locked plateau for any rational w=p/q. On a

critical line in parameter space, the gaps between the

steps have measure zero and the DS is said to be com-

plete. It was found numerically [2], and later confirmed

experimentally [5], that the Hausdorff dimension of the
set of gaps on this critical line, 00=0.87, is a universal

number for a class of quasiperiodic maps. Generalized
fractal dimensions and the spectrum of singularities f(a)
for such sets have also been studied [3,4].

In this Letter, we report results from the numerical

study of the mode-locked steps for sliding charge-density
waves. CDW's are modeled as elastic media subject to
an external drive force with dc and ac components and to
spatially random pinning forces. Using both cellular au-

tomaton and more complete models, we find strong evi-

dence that, for the pulsed drive fields we study, a com-

plete devil' s-staircase behavior of mode-locked steps is

typical. On each step the velocity of the CDW is ration-

ally related to the ac drive period and, as the size of the
system is increased, the number of mode-locked steps in-

creases, suggesting that all rational steps will be seen in

an infinite system. We calculate the Hausdorff dimension

Do of the set of gaps and obtain Do =0.75+ 0.04
(0.88~0.05) for the cellular automaton model in two
(three) dimensions, respectively. In the continuous time
model, we find a fractal dimension of Do 0.75 ~0.08 in

two dimensions, consistent with the automaton result.
We calculate the singularity spectrum f(a) for the au-
tomaton and estimate a .,„—a;„=0.15+ 0.08 (d=2),
0.09~0.05 (d=3). The scaling properties of the CDW
staircase are much more homogeneous than those of the
circle map, for which a „. „—a~;„=0.42. We also find

that the minimal scaling exponent, a;„, is equal within

our errors to the dynamic critical exponent ( for the ve-

locity near the depinning transition. Previous simulations
of the continuous CDW model in one dimension showed
mode locking including high-order subharmonics [6,7],
but, at least in one-dimensional automaton models [8],
the DS behavior was not observed; we argue that in au-

tomaton models, a DS can only be seen in two or more di-

mensions.
A CDW is a condensate of charge carriers which has a

periodic charge density that appears in a variety of highly

anisotropic solids [9]. The CDW behaves as an elastic
medium that is distorted by quenched random impurities
in the solid [9,10]. At small applied electric fields, these

impurities pin the CDW in a static configuration. At dc
fields F exceeding a threshold field FT, the CDW slides

and carries a current proportional to its velocity v. The
depinning transition separating these two behaviors has

been studied as a dynamic critical phenomenon [11],with

the velocity behaving as v —(F —FT)», for a critical ex-

ponent (.
We study two models for the dynamics of CDW's,

which incorporate these characteristics of physical
CDW's. The first model, which has been studied exten-

sively numerically [9], is a simplification of the model due

to Sneddon, Cross, and Fisher (SCF) [10]. The distor-
tions of the CDW in this model are given by the variables
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p;, which are defined at W lattice sites indexed by i. The
equations of motion for the p; are found from the
Fukuyama-Lee-Rice Hamiltonian, assuming relaxational
dynamics, and in dimensionless units are given by

a'v;+h cos(v; —P;)+F(r), (1)
where the term with the lattice Laplacian, 6, defines
the elastic forces, h is a pinning strength magnitude,
the P; E [0,2n) are random variables representing the
quenched disorder, and F(t) is the external force due to
the electric field. This model reproduces the CDW depin-
ning transition and the complex memory eA'ects seen in
CDW's [9]. We use periodic boundary conditions. The
average velocity v is defined as v N Pp; and is in-
dependent of initial conditions [12]. For small amplitude
sinusoidal driving at frequency ro, the properties of the
SCF model and Eq. (1) are subtly different. A narrow
region of mode locking was found for Eq. (1) even for
small ac fields [7], because for ru v, the perturbation
theory is stable in the SCF model, but not for Eq. (1) [6].
There are no significant differences between the models
for pulsed driving, which we use here.

Coppersmith [8] has shown that, in the limit of strong
pinning h and for pulsed drive fields F(t) =Fp+F~g„b(r—ntII) (where F„ is the magnitude of the pulses, with the
period trI longer than local relaxation times, and
n 1,2, . . .), the equations of motion, Eq. (1), are well
approximated by an automaton model. In the automaton
model, the phase takes on discrete values (representing
the positions of the minima of the pinning potential) and
the continuous time dynamics is replaced by a map be-
tween the configurations after successive pulses. Numeri-
cal work on the dynamics of Eq. (1) also suggests that
the critical behavior at the depinning transition is in-
dependent of the details of the pinning [13]. With these
points in mind, we have also studied a variant of the cel-
lular automaton model in [8] which is given by the
discrete-time map

are only a finite number of mode-locked steps. The case
where P; is quasiperiodic is currently being studied.

A Thinking Machines CM-2 with 16K processors was
used to simulate the equations of motion, Eqs. (1) and
(2). Mode-locked behavior was simply defined as the
configuration returning to the same shape after an in-
tegral number of drive periods (to within numerical error
for the continuous model). Bisection in the dc field was
used to find the endpoints of mode-locked steps to a high
accuracy (for the automaton, to one part in 10 ). Steps
were found for all rationals in successive generations of
the Farey construction [14]. The gth generation P~ in

the Farey tree is given by the set of 2 + 1 rationals
[pII/q, ] ordered by magnitude, with initial set VII=[0/1,
1/2], and V~+I being the union of V and the set j(pf
+p„+I)/(q„+q„+I), for n =1, . . . , 2I'. (Due to a sym-
metry in the automaton model, we consider only the ra-
tionals in the interval [0/1, 1/2].)

The mode-locking behavior for the cellular automaton
model in dimension d 2 is shown in Fig. 1, where we
have plotted the average velocity as a function of the pa-
rameter (F—h), for a system of size 256 and a=0.1.
The steps shown are for all rationals down to generation

g 7 of the Farey tree, i.e., 129 steps. The whole interval
in (F h) is c—overed by mode-locked steps (not shown
here) [15]. As the size of the system is increased, the
number of mode-locked steps increases and the Farey tree
becomes complete to more generations, with approxi-
mately one more complete generation seen for each dou-
bling of the linear size of the system. This suggests that
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where the m; are integers, (F—h) is the total of the drive
field (F Fn+F„) minus the maximum pinning force
that must be overcome, and the 6 P; term is due to the
disorder. The term with the coefficient e gives rise to
next-nearest-neighbor interactions and represents high-
er-order terms in a FII/h expansion. The parameter e can
be used to study the eAects of finite pinning strength and
also allows us to investigate the sensitivity of our results
to variations in the model. The average velocity v is given
by the average fraction of sites where m; advances in a
single time step.

%'e note that in both the continuous model with a long
pulse period and the automaton model, if there is no
quenched disorder (P;—=0 or P; periodic in space) there
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FIG. I. Mode-locking steps for 256 automaton with a=0.1,
shown as average velocity I vs the barrier height (F—h). All
steps are shown down to the g 7 level of the Farey tree of ra-
tionals. The inset shows, for various K, the estimates Dq~(K) vs

g ', for q 0 in the two-dimensional automaton model. Ex-
trapolation to g

' =0 gives the Hausdorff dimension Dp
=0.75 ~ 0.04.
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2g pq
K= f

(q- i)o,
I

(3)

For any finite K &0, the generalized dimension Dq is
defined as limg- DI(K) =Dq. We find Dq by plotting
Df(K) vs g

' for various K and extrapolating to the limit

g
—I 0
In the inset in Fig. 1, we show such plots for a two-

dimensional automaton of size 256, with a=0.1. By ex-
trapolating to zero, we estimate Dp to be 0.75+ 0.04, in

agreement with our result for E=O, which is Dp=0. 73
+ 0.04. From a similar analysis for the d =3 automaton,
we determine Do 0.88 ~ 0.05.

We have also examined mode-locked steps in the con-
tinuous model Eq. (1) in two dimensions. A plot of v vs

Fo for pulsed fields, with F„=l, to=4, and a pinning
strength of h =25, is shown in Fig. 2. Again, we find

complete mode locking to a relatively large number of
generations in the Farey tree (g=6) and many other

in the infinite system, all rational velocities will be seen,
and that the mode-locking forms a DS.

To analyze the DS we calculate the Hausdorff dimen-
sion Dp and the generalized dimensions Dq of the set of
gaps [3]. The measure P; associated with the gap be-
tween mode-locked steps P;/q; and p;+I/q;+I is defined as
the difference in the velocities across the gap, i.e., P;
=p;/q; —p;+I/q;+I. The width of the gap I; is the
difference in applied dc field F at the right end of the step
with velocity p;/q; and the left end of the step with veloci-
ty p;+I/q;+I. For any constant K, the approximation
Df(K) to Dq associated with the gth generation of the
Farey tree is given implicitly by [3]

steps with higher generation numbers. For a11 values of
Fp we have examined, we find mode locking. We obtain
Dp=0.75+ 0.08 for this system, which agrees, within our
errors, with the value for the two-dimensional automaton.

Using our results for Dq, we determine the spectrum
of singularities f(a) =q(d/dq) [(q —1)Dq] —(q —1)Dq,
which describes the scaling properties of the fractal [3].
This function [16], for the d=2 automaton, is shown in

Fig. 3. The points where f(a) 0 have special signifi-
cance. The largest value, a „. „D—,is determined by
the gaps for which the measure P; is very small. Gaps of
this type appear in the vicinity of quadratic irrationals.
On the other hand, the smallest value a;„=D, is deter-
mined by gaps for which the measure P; is very large.
Such gaps are those adjoining low-generation steps. The
measure of these gaps, P; —1/g, decays more slowly than

any other gaps. Therefore, high-order gaps in the vicinity
of primary steps scale like P; -I,' '", where I; is the width

of the gap on the dc field axis, while P; is its measure
along the velocity axis. The relation between the velocity
and the field near the 0/1 gap is also described by
i —(F FT ) f w—here we find the critical exponent
=0.64+'0.03, 0.81 ~ 0.03 in d =2,3, respectively (in nu-

merical agreement with results on other CDW models
[13]). Since both relations become exact in the scaling
regime where very-high-order steps are very narrow and
can be smoothed out we find that a~;„=(. Universality
of the critical behavior suggests the same power law ( de-
scribes the behavior near other steps (a related argument
gives a~;„=1/2 for the circle map [2]); we have
confirmed this near the 1/2 and 1/3 steps. Numerically
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FIG. 2. Mode-locking steps shown for the continuous CD%'
model of Eq. (I) in a system of size 64' in a pulsed field (pin-
ning strength h 25 and a pulse magnitude of Fp =1). The en-
tire velocity v vs dc field Fo is shown; in this finite system, there
are steps for all rationals down to the g =6 level of the Farey
construction.

FlG. 3. The spectrum of singularities f(a) for the devil' s

staircase of Fig. 1. The shaded region shows the uncertainties
in our analysis. The smallest scaling exponent a;„ is found to
be equal, within our numerical uncertainties, to the dynamic
critical exponent g, which is represented by the thick line on the

a axis.
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we find a;„0.67 ~ 0.04, 0.80+ 0.05, in d =2, 3, respec-
tively, consistent with the relation a;„=(.

In the one-dimensional cellular automaton with e=0,
we find that the mode-locking behavior is nearly trivial,
with only half-integer steps occurring. Coppersmith [8]
found only a few mode-locked steps in a more complicat-
ed automaton model. The simple behavior in one-
dimensional systems is related to the behavior of closely
related sandpile models [17]. The depinning transition at
the edge of the 0/I step is analogous to the first avalanche
in the sandpile model that is the size of the system. Be-
cause of the periodic boundary conditions, this avalanche
does not die out and the average velocity is easily shown

to be I/2 immediately above the transition. The relation
between ID automata and the 1D continuum model
(which does have high-order subharmonics [6]) is puz-
zling.

In summary, we have investigated mode locking in

models of CDW's, which are extended driven systems
with quenched disorder. We find that mode locking to
high-order rationals is typical for certain ac drives in two
and three dimensions, with the number of steps increasing
with system size, and estimate the fractal dimensions of
the gaps. Disorder is necessary to the existence of the
high-order steps. We find that the spectrum of singulari-
ties f(a) is narrow compared to that for few-degrees-of-
freedom systems. We have studied pulsed driving, with a
period long in comparison to relaxation times and always
find a complete DS. If the pulses are moved close togeth-
er or replaced by sinusoidal driving, the DS is expected to
become incomplete. Further simulations are currently
being performed to study these cases.
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