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New One-Dimensional Conductors: Graphitic Microtubules
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On the basis of realistic tight-binding band-structure calculations, we predict that carbon microtu-
bules exhibit striking variations in electronic transport, from metallic to semiconducting with narrow and

moderate band gaps, depending on the diameter of the tubule and on the degree of helical arrangement
of the carbon hexagons. The origin of this drastic variation in the band structure is explained in terms of
the two-dimensional band structure of graphite.

PACS numbers: 7 l.20.Hk, 36.20.Kd, 7 l.25.—s

Recently, a new form of graphitic carbon needles has
been discovered in carbon rods after an arc discharge by
high-resolution transmission-electron microscopy [I]. A
needle typically consists of a few microtubules centered
coaxially about the needle axis, and is hollow. A micro-
tubule has the form of a rolled graphitic sheet with a di-
ameter of a few nanometers. Moreover, the carbon-atom
hexagons on each tubule are usually arranged in a helical
fashion about the needle axis. These structural charac-
teristics are fascinating, and the condensed-matter prop-
erties of the microtubules are extremely interesting in

connection with the recently discovered C60 solid [2].
In this Letter, we show that the graphitic microtubules

exhibit a variety of properties in electronic conduction,
from a typical semiconductor to a good metal, depending
on the tubule structure, i.e., the diameter of the tubule
and the degree of the helical arrangement. We determine
the tota)-energy-optimized geometry for each microtu-
bule by using Tersoff's empirical interatomic potential
[3]. We then calculate band structures for a variety of
total-energy-optimized microtubules by means of a reli-
able tight-binding method. We find a rich variation in

the energy band structures of the graphitic microtubules.
There is an infinite number of possible atomic struc-

tures of the graphitic microtubules. Each structure is
identified by its diameter and by the degree of the helical
arrangement of the carbon hexagons. Those structures
are conveniently described by choosing lattice points in a
graphite sheet as follows. Suppose we have a monatomic
sheet of graphite (Fig. I). We first choose the origin and
then a lattice point in the sheet. Next, we roll the sheet
so that the chosen lattice point is superposed on the ori-
gin. In this way we can construct a graphite microtubule,
and any microtubule, in turn, uniquely corresponds to a
lattice point; i.e., we can use a lattice point of a graphite
sheet as an index of the atomic structure of the graphitic
microtubule. This index is denoted as A(nl, n2) hereaf-
ter, where (n~, nq) represents a lattice point. In order to
keep a one-to-one correspondence between the structure
and the index, we confine the parameter space to
ni ~ 2nq) 0. Further, after specifying (n~, n2) there are
two ways of rolling the graphite sheet, i.e., from the back
of the sheet to the front or from the front to the back.

The resulting two tubules are chiral (inirror symmetric to
one another). We do not distinguish these chiral tubules
in this paper, since the energy band structure that we dis-
cuss here is independent of the chiral structure. For the
convenience of the discussions below, we further intro-
duce another index: If n ~

=l]n and n2 =12n, we use an
index B(li, l2)n instead of A(n~, n )2. In this notation,
(I ~, I2) denotes a construction unit in the direction of the
circumference of the tubule, and n represents the number
of construction units on the circumference.

ln a microtubule denoted by the above index, relaxa-
tion of carbon atoms is expected since the curvature of
the tubule and thus the structural inequivalence between
the axis and normal directions render the carbon-atom
hexagons distorted. We determine this atomic relaxation
by total-energy minimization of the carbon-atom system
described by the Tersoff' interatomic potential [3]. We
then perform a band-structure calculation for each tubule
by using a newly developed tight-binding method. The 2s
and 2p orbitals of a carbon atom are used as the basis set
to express the tight-binding model, and the nonortho-
gonality of the atomic orbitals between neighboring sites
is fully taken into account. The transfer and the overlap
integrals have suitable distance dependences in order to
describe the band structures in various atomic configur-
ations. The band structures of graphite and C6e calculat-
ed with the present tight-binding model [4] are essentially
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FIG. I. A monatomic layer of graphite. Vectors a and b are
unit vectors of the two-dimensional lattice. The coordinates of
the lattice points are shown in the figure, which are useful to
distinguish the crystal structures of tubules.
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identical to those from the ab initio local-density calcula-
tion [5]. Technical details will be published elsewhere.

We now present several examples of the electronic
band structure which clarify salient features of the gra-
phitic microtubules. Figure 2(a) shows the geometry for
the tubule 8(1,0)n, in which a C-C bond is parallel to the
tubule axis. The construction unit along the circumfer-
ence is also shown in the figure. Figure 2(b) shows the
first Brillouin zone (BZ) of a graphite sheet. When we

make a tubule from a graphite sheet, the periodic bound-

ary condition along the circumference allo~s wave vec-
tors only on certain lines in the BZ of graphite, as shown
in Fig. 2(b) (see below for further discussion). The band
structure of 8(1,0)12 is shown in Fig. 2(c). Bands
higher than the Fermi level are antibonding x bands.
Bonding z bands are located at energies lower than the
Fermi level, while bonding sp o. bands appear at energies
lower than —2.5 eV and mix weakly with n bonding
states. The band structure exhibits an energy gap of 8
meV at the I point. Figure 2(d) shows the band struc-
ture of 8(I,O)13. In this case, the calculated energy gap
is 0.697 eV. A drastic variation of the energy gap with a
slight change of the tubule diameter takes place in

8(1,0)n tubules.
The origin of this diAerence in energy gap between

8(1,0)12 and 8(1,0)13 can be explained in terms of the
two-dimensional graphite band structure. Unless the tu-
bule diameter is extremely small, the band structure of
the tubule somewhat resembles that of graphite. The
main diA'erence between graphite and the tubule lies in

the periodic boundary conditions. A graphite sheet is re-
garded as an infinitely extended system, and an artificial
periodic boundary condition is imposed on a macroscopic
scale. This results in the usual Bloch wave functions la-
beled with wave vectors in the first BZ. For a tubule,
while the boundary condition along the tubule axis is the
same as for graphite, the periodic boundary condition is
imposed for a finite period along the circumference. This
results in Bloch wave functions with discretely selected
wave vectors. Figure 2(b) explains this situation for
8(1,0)6. The vertical lines show the allowed wave vec-
tors. For 8(I,O)n, the vertical lines are found to cross
the points which divide the straight, ine of doubled I -M
into n parts. Of note is that the bonding and antibonding
z bands are degenerate at the K point in the Bz of a
graphite sheet [6]. Therefore, if a vertical line crosses the
K point, namely, if n is a multiple of 3 the tubule might
be a metal. However, the degenerate point is actually
moved from the K point to the positions sho~n by open
circles in Fig. 2(b), because the electron transfer is
enhanced in the circumference direction due to the curva-
ture of the tubule surface [7]. The tubule thus becomes a
narrow-gap semiconductor, not a metal. Now, a rule can
be derived that if n is a multiple of 3 the energy band of
the tubule 8(1,0)n has a narrow gap, and otherwise a
moderate or wide gap. This is the reason why the
8(1,0)12 tubule has a narrow band gap and the
8(1,0)13 tubule has a wider band gap. Figure 3 shows
the calculated variation of the energy band gap as a func-
tion of n for the tubules of 8(10)n, with n

=6,7,8, . . . , 15.
There is a special class of tubules which become met-

als. It is 8(2, 1)n. Figure 4(a) shows the geometry of
these tubules: The tubule axis is perpendicular to a C-C
bond. Figure 4(b) shows the first Brillouin zone of a
graphite sheet. The set of wave vectors which are allowed

by periodic boundary conditions for a tubule always con-
tains the K point for all n, because the line crossing the 1

point always crosses the K point, as is shown in the figure.
Although the enhancement of the electron transfer along
the tubule circumference moves the degenerate point, the
point always stays on the allowed line, as shown with

FIG. 2. (a) The geometric configuration for tubule B(1,0)n.
"Unit" is the construction unit along the circumference, denot-
ed by (1,0). The notation B(I,O)n means that the tubule has n

construction units on the circumference. (b) The first Brillouin
zone of a graphite sheet (the region surrounded by the dashed
line), and the wave vectors allowed by the periodic boundary
condition along the circumference for n =6 (solid lines). Open
circles show the points where the bonding and the antibonding z
bands are degenerate in the tubule. Band structure of (c)
B(1,0)12 and (d) B(1,0)13. The X point has a wave number
near ///a, with a the graphite in-plane lattice constant. Two
bands stick together at the X point due to the screw symmetry.
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FIG. 3. The energy band gap as a function of the number of
hexagons on the circumference for tubules B(1,0)n. Symbols 0
and + represent the classes of narrow-gap and moderate-gap
semiconductors, respectively.
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FIG. 4. (a) The geometric configuration for tubule B(2, I )n
(b) The first Brillouin zone of a graphite sheet (dashed line),
and the wave vectors allowed by the periodic boundary condi-
tion along the circumference for n 4 (solid lines). Open cir-
cles show the points where the bonding and the antibonding x
bands are degenerate in the tubule. (c) Band structure of
B(2, l)6. The X point has a wave number near &3n/a. The ar-
row shows a wave vector corresponding to the K point.

We assume in this paper that all the carbon atoms are
equivalent on the tubule surface. However, a symmetry
lowering due to a lattice distortion may happen at low
temperatures: For example, a one-dimensional metal
may suffer a Peierls distortion. Other instabilities, such
as superconductivity, might be expected. The microtu-
bule has various possibilities for the low-temperature

phases.
In summary, we have systematically studied the elec-

tronic band structure of graphitic microtubules. Microtu-
bule~ are categorized into three classes: The first class
consists of metallic tubules, the second of semiconducting
ones with narrow band gaps, and the third of semicon-
ducting ones with moderate band gaps. The band gap is

tunable by choosing the tubule structure. The graphitic
microtubule is thus an extremely interesting material and
a new hope for a one-dimensional conductor.

We wish to thank Dr. S. Iijima for stimulating us to
calculate the electronic structure of the tubule and for
fruitful discussions on the tubule structure.

open circles in Fig. 4(b). Therefore, these tubules be-
come metallic. Figure 4(c) shows the band structure of
8(2, 1)6. Two bands cross the Fermi level at the same
wave vector, exhibiting a metallic nature. The Fermi
wave vector is displaced from the ideal K point shown by
an arrow in the figure. The qualitative situation is un-

changed for any n in 8(2, 1)n We no. te that the Fermi
wave vector is slightly changed with variation of the tu-
bule diameter, namely, with varying n. Mintmire, Dun-

lap, and White [8] have recently shown by using a local-
density band-structure calculation that the tubule of
8(2, I )5 is metallic.

By examining the periodic boundary condition along
the circumference and by referring to the energy bands of
graphite, we can derive a general rule for the band gap of
graphite microtubules: A tubule 3 (n ~, nz) (n ~

~ 2nz
~0) is (I) a metal for ni —2n2=0, (2) a narrow-gap
semiconductor for n~ —2n2 =3m (m = I, 2, . . . ), and (3)
a moderate-gap semiconductor otherwise.
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