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Direct Experimental Observation of Fracton Mode Patterns in One-Dimensional Cantor Composites
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By measuring fracton mode displacements in artificial piezoelectric composites with hierarchical struc-
ture, we find direct evidence of their localized and self-similar character. Clear indications of the ex-
istence of multiple fracton and phonon regimes are also presented.
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The transition between extended-vibration (phonon)
regimes and a localized-mode (fracton) regime in fractal
structures has been the subject of several theoretical in-

vestigations [I] since the first studies on fractons [2].
Two crossover wavelengths have been identified, A,

~
and

A, z, such that modes with wavelength 1I, larger than a
correlation length ( (A. ) A,

~
=() are extended phonons

with dispersion ro-I/A. , whereas vibrations with wave-

length shorter than the smallest-particle size a (X &1I,2
=a) are essentially the modes of the individual constitu-
ent particles. In the intermediate frequency range
(1I,2 &1', &X~) the new fracton excitations are expected,
with dispersion relation ro-X '. Here D and d, are

—D/d,

the fractal and spectral dimensions, respectively, the
latter being the exponent characterizing the smooth be-
havior of the density of states (DOS) in the fracton re-

gime.
On the experimental side [3], evidence for the different

mode behavior has been obtained especially from the ex-
tensive work in silica aerogels by Courtens, Vacher, and
Stoll, who measured the DOS by several complementary
techniques [3(e)]. However, the pattern of vibration
modes could not be directly probed so far, so that the
different localization of modes is usually deduced from
the scaling behavior of the DOS.

In the present work we have adopted a different ap-
proach. By constructing suitable artificial one-dimen-
sional fractal (Cantor) structures with piezoelectric
ceramic and resin constituents we are able to excite vibra-
tions over a wide frequency range (10 kHz & ro & 5

MHz) and to measure not only the frequency spectrum,
but also the surface amplitude of the individual vibration
modes. Our experimental mode patterns and frequency
spectrum are successfully compared with the predictions
of a scalar model, previously tested on several periodic
samples [4].

The main results are the direct evidence of the local-
ized character and self-similar nature of fracton displace-
ment patterns, and the existence of further fracton re-
gimes at wavelengths shorter than the "particle size" a,
corresponding to localized modes in the gaps between
successive harmonic bands of extended modes.

Our samples are composite plates formed by alternat-
ing elements of piezoelectric ceramic and epoxy resin, fol-
lowing a triadic Cantor sequence [5] up to the fourth gen-
eration (a total of 31 elements). The geometry of the

sample is presented in Fig. 1. Cladding ceramic elements
are added at the ends of the sample. The two constituent
materials are selected to have a very large difference in

acoustic impedance z =pv, p and v being the mass density
and relevant sound velocity. As we will see below, this is

important to allow the existence of large and well-defined
fracton frequency ranges in spite of the relatively small
number of generations. The width I of the smallest layers
of ceramic and epoxy was chosen such that the acoustic
path is the same in both elements (for ceramic l=0.8
mm and for resin l=0.453 mm). This gives a crucial
simplification in the frequency spectrum (see below).
The thickness of the plate (0.3 mm) was designed in such
a way that the lowest Lamb mode (So) [6] propagates as
an effective scalar mode to a very good approximation, as
demonstrated in Ref. [4] on periodic structures.

In order to probe the vibration spectra, highly re-

flecting Al electrodes are deposited on both surfaces of
the plates; the admittance function is then measured in a
bridge meter. Typical admittance curves (Fig. 2) present
a series of maxima when resonant modes of the plate are
electrically excited. The increasing background is due to
the tail of the large "thickness resonance" (mode S~) at
ro/2m=5 MHz. Only modes symmetrical with respect to
the free ends of the plate are excited [4]. The vibration

amplitude is measured at each of these frequencies by an

interferometric optical technique whereby a He-Ne laser
beam is split in a Mach-Zehnder interferometer; a part of
the beam, perpendicularly incident on the sample surface,
is phase modulated by the sample vibration and suitably
recombined with the unperturbed beam. This heterodyne
technique allows local detection of the normal component
of the surface displacement (magnitude and phase) down

to 10 A [4(c)]. Examples of vibration amplitude
profiles obtained by scanning the sample across the
diff'erent elements are shown in Fig. 3 and will be dis-
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FIG. l. Sketch of the experimental setup; an electric field
applied on the electrodes excites Lamb waves which are propa-
gating along the plate. The normal displacement component is
measured by an interferometric laser probe.
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FIG. 2. Raw experimental admittance curve vs frequency for
a sample with four generations. The lowest part of the spec-
trum is enlarged in the inset. The numbered arrows indicate
the peaks which have been identified on the basis of their mea-
sured displacements and are reported in Fig. 4.

cussed below.
A simple one-dimensional model is used to calculate

the frequency spectrum and the normal displacement am-
plitude of the plate surface. This is possible because we

are interested in the frequency range where only the
lowest (symmetric) plate mode, the So Lamb mode, is ex-
cited. Moreover, as this mode is prevailingly longitudinal
[6], the effective velocities may be taken as constants in

each material. From the acoustic impedances of both
materials, z i and zq, the reflection coefficient at the inter-
face between medium 1 and medium 2 is simply obtained
as riz=(zi —zz)/(zi+zz); at the opposite interface,
rzi = —riz. The transmission of the whole structure is

then iteratively obtained by a transfer matrix method, at
any frequency. The resulting transmission function is

characterized by a series of peaks corresponding to the
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FIG. 4. Calculated log-log plot of the integrated DOS vs

mode frequencies for the sample of Figs. l and 2; the high-
frequency part is enlarged in the inset (circles). Numbers indi-

cate the modes which have been identified in Fig. 2 on the basis
ol' their displacements (we recall that odd-parity modes cannot
be experimentally observed). Four regimes can be distin-
guished: ln (a) and (c), the points follow the dispersion curves
of the corresponding periodic sample where the smallest ele-
ments of ceramic and resin alternate (solid lines); in (b) and

(d) they display a quasilinear dispersion as fitted by the dashed
lines.

eigenmodes of the structure; at each of these peaks we
calculated the z displacement of the wave field, u-, know-
ing that this is related to the longitudinal field, u„by the
relation u- - |lu„/Bx [4(c),6]. The actual parameters
used in the calculation are similar to those used in Ref.
[4] (for the ceramic constituent, v =3000 m/s, p=7.65
g/cm'; for the epoxy constituent, v =l700 m/s, p=l. l7
g/cm'). The calculated frequency spectrum is plotted on
a logarithmic scale in Fig. 4, and calculated displace-
ments corresponding to the experimental ones are shown
in Fig. 3. The numbers in Figs. 2 and 4 mark those
modes which have been identified in the experiment on
the basis of their displacements. %e believe that a com-
parison between theory and experiments, based on dis-
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FIG. 3. Examples of normal vibration amplitude profiles of
(a), (b) localized and (c) extended modes. For each ~ode, top
(bottom) panels contain the measured (calculated) displace-
ments. A sketch of the sample geometry is given on the abscis-
sa (dashed, ceramic; white, resin). Only a part of the sample is

represented here, due to the mirror-plane symmetry with

respect to its central plane (x =30 mm).

1556

t 8 kM 8 NLA%%XLAW 8M 8NLAMXLA%LALA%%XLALAXLAXKXLAR

0 5 1 0 1 5 20 25 30 35 40
x (rnrn)

FlG. 5. Experimental normal amplitude profiles for three lo-

calized modes displaying self-similar behavior.
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FIG. 6. Frequency vs fracton wave vector q for modes in the
fracton regime (b). Circles and triangles represent experimen-
tal and theoretical data, respectively (the error in determining q
is approximately 5%). Solid and dashed lines are the corre-
sponding linear fits.

placements rather than merely on frequencies, is much

more meaningful, as it allows us to exclude spurious ex-

perimental resonances, most of which can be unambigu-

ously assigned to plate vibrations along lateral directions
and their harmonics.

The evidence of localized fracton modes and extended

phonon modes is immediately apparent from their dis-

placements (Fig. 3). In modes 10,13 [Figs. 3(a) and

3(b)] the vibration amplitude is mostly localized on a few

elements, while mode 20 [Fig. 3(c)] essentially extends to

the whole sample.
A remarkable direct evidence of the self-similar nature

of displacements, reflecting the self-similarity of the

structure, comes from Fig. 5, where we show three local-

ized modes of different frequencies corresponding to vi-

brations of "subclusters" of different scales in the same

sample. To our knowledge this is the first experimental

evidence of self-similarity in the displacement patterns

[7].
As expected, the different localization of mode dis-

placements closely reflects the clear crossovers in the

slope of the integrated DOS (Fig. 4): A first crossover

occurs between the long-wavelength region of extended

modes (a) and the subsequent region of localized modes

(b), which extends up to a second crossover to the so-

called "particle regime" (c). However, we find that a

second fracton region (d) appears at higher frequencies,

also limited by a distinct crossover to region (c). This

evidence is extremely clear both theoretically and experi-

mentally, from our integrated DOS (Fig. 4) and from the

displacement patterns. For example, while the first two

modes of Fig. 5 belong to the fracton region (b), the third

one falls in region (d) [8]. Those modes of our Cantor
sample which have extended displacement profiles follow

very closely the dispersion of the corresponding periodic

sample [9]; indeed, both the integrated DOS and the

band edges shown by the solid lines in Fig. 4 for this

periodic structure seem to correspond closely to the ob-

served data for the extended modes of the Cantor sample.
This is true not only for region (a), but —even more
clearly —for region (c) where indeed the mode displace-
ments are also definitely extended [see, e.g. , Fig. 3(c)].
As soon as their displacements are localized, the modes
begin to deviate from the periodic dispersion; it is not
surprising to find that indeed they fall in the successive

gaps of the periodic structure. In brief, we are now inter-
preting the Cantor structure as obtained by inserting
many "defects" in an otherwise periodic structure based
on the smallest elements, which are in fact the most
numerous. In this view, we are led to a generalization of
the notion of fracton regime, since we do expect that lo-

calized modes will appear whenever a gap is present be-
tween the extended mode bands. Our experiments were
able to detect only two of these fracton regimes [regions
(b) and (d)], but further extended-mode bands and
localized-mode regions may exist also at higher frequen-
cies.

The dispersion of fracton modes in a log-log scale fol-
lows a quasilinear behavior which is fitted by dashed lines
in Fig. 4. We find that the slope of the lines correspond-
ing to regions (b) and (d) is very similar, and yields a
spectral dimension d, =0.67, approximately equal to the
fractal dimension D =ln(2)/ln(3) =0.63. A further illus-

tration of region (b) is given in Fig. 6 in the form of a co

vs q plot; here q is not an effective wave vector of the
whole structure, but a fracton wave vector [10] obtained
as the inverse of the fracton wavelength, as measured by
counting the nodes in the region where the mode is local-
ized. Circles and triangles are the result of such an

operation performed on the experimental and the theoret-
ical data, respectively. The very small difference in fre-
quencies and in the slope of the two fitted lines can be at-
tributed to the slightly dispersive character of the
relevant Lamb wave, neglected in the calculation [4].
Again, we find that D/d, is very close to l b.oth in the ex-
perimental and in the theoretical data.

In conclusion, we have provided direct experimental
evidence of the existence of multiple fracton and multip/e
extended mode reg-imes both in the dispersion and in the
displacement patterns of a finite Cantor sample. We be-
lieve that our findings may be of interest to more complex
fractal structures, and hope that they will stimulate fur-
ther experimental and theoretical work.
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