
VOLUME 68, NUMBER 10 PH YSICAL REVIEW LETTERS 9 MARCH 1992

Turbulent Flow between Concentric Rotating Cylinders at Large Reynolds Number
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Turbulent Taylor vortex flow is studied in experiments for Reynolds numbers 10'(R & 10 . Simple
scaling of the torque with Reynolds number is not observed for any range of R, although the characteris-
tic time scales and the transport of passive scalars are found to scale with the global torque measure-
ments. Above a nonhysteretic transition observed at R 1.3x10, the torque has a Reynolds number
dependence similar to the drag observed in wall-bounded shear flows such as pipe flow and flow over a
flat plate.

PACS numbers: 47.25.Ae, 47.20.Ft, 47.25.Ei, 47.25.Jn

Understanding the complexity of turbulence has long
been a challenge to physicists [I]. As a system is driven
to higher and higher values of the Reynolds number R,
one might expect the details of the forcing to lose
significance and universal behavior to emerge. Specific-
ally, for high enough values of the Reynolds number, the
global properties of the system could be expected to scale
with R to some power. Such scaling was found in previ-
ous measurements of torque for flow between concentric
rotating cylinders (Couette-Taylor flow) [2] and in exper-
iments on convection-driven turbulence at high Rayleigh
numbers [3].

The present experiments were undertaken to measure
the scaling exponent a of the torque, G-R', in Couette-
Taylor turbulence for R up to 1.2x10, which is far
beyond the onset of Taylor vortices (R,. =82.4) and the
onset of chaos in this system (R- IO ) [4]. Surprisingly,
we have found no range in R in which the torque for tur-
bulent flow exhibits a simple scaling with a =const.

The scaling exponent for R 0 has been known since
the work of Couette [5]:a = I. This result is the basis for
Couette viscometry. In the opposite limit, R ~, a pre-
diction for a can be obtained from the Kolmogorov
theory of turbulence [6]. The theory assumes that the
dissipation rate e per unit mass is a constant, independent
of length scale for a wide range (the inertial range):
e =(hU) /I for a velocity difference AU across a length l.
We estimate e using the largest length scale, I=b —a,
where a and b are the radii of the inner and outer
cylinders, and the corresponding velocity, h, U = Oa,
where 0 is the rotation rate of the inner cylinder (the
outer cylinder is at rest). Thus the torque, which is the
total power dissipated (e x volume) divided by the rota-
tion rate, is given by G =tr[ri(I+ri)/(I —ri) ]R, where
R =Oa(b —a)/v, v is the kinematic viscosity, p is the
density, ri= a/b, and G is the dim—ensionless torque per
unit length [7]. Thus a =2 for Kolmogorov turbulence.

An intermediate scaling regime might be expected in
which there would be a turbulent core region with well-
mixed angular momentum, and this core would be bound-
ed by thin boundary layers near the inner and outer
cylinder walls. This picture is supported by measure-
ments of Smith and Townsend [8] in the range 7.3
x10 & R & 1.2x IO . Marcus [9] showed that if the an-

gular momentum is assumed to be well mixed and the
boundary layers are assumed to be at the critical Rey-
nolds number for the onset of Raylor instability, then
O-R-"'.

We now describe our experiments and then we will

compare our results with the predicted scaling exponents
for turbulent flow, a=

& and 2, and with results from
other experiments.

Our apparatus consists of a stainless-steel inner cyl-
inder of radius 16.00 cm and a transparent polished Plex-
iglas outer cylinder of radius 22.06 cm; thus g=0.7253.
The working section length L is 69.50 cm, giving an as-
pect ratio I =L/(b —a) =11.47. To minimize end effects
the inner cylinder is made in three sections with only the
center one (43.2 cm long) sensing the torque; the center
section is mounted on a set of low-friction bearings to
decouple it from the end sections. The maximum rota-
tion rate of the inner cylinder (16.5 Hz in water at 30'C)
is set by the 2-kW power available from the motor. Heat
is removed with cooling water pumped through the end
plates, and the temperature is controlled to 0. 1 C. Tem-
perature measurements at several axial positions show
that, even at the largest R, the fluid temperature is uni-
form to within 0.01'C.

The torque is determined from the deflection of a
force-sensing arm that couples the center section of the
inner cylinder to the shaft (this section would otherwise
rotate freely). The deflection of the arm is measured
with resistance strain gauges mounted on both sides of
the arm; the gauges form two sides of an ac bridge whose
output is measured with a lock-in detector. The torque
measurements are calibrated by hanging weights at a
known radius while the cylinder is held horizontally. A
precision of 0.1% is achieved at all Reynolds numbers by
using water-glycerol mixtures with difl'erent viscosities:
0.0080, 0.027, 0.070, 0.180, and 0.39 cm /s at 30'C, as
measured with Cannon-Fenske viscometers.

The wall shear stress is measured with a hot film probe
(TSI model 1268W) mounted flush with the outer
cylinder midway between the ends. The probe is calibrat-
ed using the torque measurements [10].

Flow patterns are visualized using a 0.1% concentra-
tion of Kalliroscope [I I]. Photographs of the flow such
as those in Fig. 1 show that the size of the smallest fluc-
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FIG. I. Photographs of turbulent Taylor vortex flow at (a)
R =4600 and (b) R=I5300. (Taylor vortices first form at
R, =82.4.) The four vortices shown are from an eight-vortex
state, corresponding to an average axial wavelength of
2.87(b —a). The letters indicate the inflow (I) and outflow (0)
boundaries.

tuations decreases rapidly with increasing R, and the visi-

bility of the Taylor vortices gradually decreases until they
are no longer discernible for R ) 10 .

The torque measurements are shown in Fig. 2(a). The
measurements were made with widely overlapping Rey-
nolds number ranges for the five fluids. Analysis of these
data, as we shall describe, reveals a previously unobserved
transition at RT=1.3x10: For R & RT the data can be
fitted with G-R' with a =1.30, while for R & RT,
a= 1.73 [12]. However, both below and above RT the
data clearly exhibit systematic deviations from simple
power laws; hence we were led to examine the data more
closely.

The high precision of our torque data enables us to
determine the local exponent a from the slope of the
graph of logG vs logR determined over a narrow range in

R, h(IogioR) =0.1. To eliminate errors arising from the
0.5% uncertainty in the viscosity values, the exponent a is

determined separately for each fluid. Figure 2(b) shows
the result for a obtained by averaging (at each R) the
values determined separately for each fluid. The con-
clusion is that there is no range in R for which the torque
is described by a fixed exponent a. Rather, a increases
monotonically from 1 23 at R =2800 to 1 87 at R
=1.2x10 . The transition at RT=1.3x10 is apparent
in Fig. 2(b): At RT, tla/tl(iogR) decreases by a factor of

1.4
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FIG. 2. (a) The measured nondimensionalized torque for the
eight-vortex state [7]; (b) the corresponding local scaling ex-
ponent a. The straight lines in (b), which are drawn to guide
the eye, are given by, for R (Rr, a =1.66+0.647 logio(R/Rr),
and for R )Rr, a = I.66+0. I I I Iogio(R/Rr); Rr =1.3x 10 .

The horizontal bars above the graph indicate the Reynolds
number range for each Quid studied.

6 [2].
The value of the local a at transition is the same as

that predicted by the marginal stability argument men-
tioned earlier, that is, a=

& . However, there is no re-

gime where the marginal stability scaling holds; the local
exponent simply passes through the marginal stability
value. This contrasts with Rayleigh-Benard convection,
where the scaling of Nusselt number with Rayleigh num-

ber measured by Heslot, Castaing, and Libchaber and
others is in reasonable accord with the marginal stability
prediction, Nu-Ra', in the range 5x10 & Ra (4
x 10, beyond which there is a transition from "soft" to
"hard" turbulence [3].

Our torque measurements together with earlier mea-
surements by Tam and Swinney [13] of diA'usion of dye
in a turbulent Taylor vortex flow provide a direct test of
the hypothesis that transport coe%cients for momentum
and for passive scalars should have the same scaling be-
havior [14]. This untested hypothesis is often made in

analyses of turbulence and is crucial for understanding
the interior structure of stars [I5]. Our measurements
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FIG. 3. A comparison of the torque computed from measure-
ments of the axial diffusion coeScient (a) with the directly
measured torque (0).

support this hypothesis, as we will now show.
Tam and Swinney injected pulses of dye into turbulent

Taylor vortex flow and measured an effective axial
diffusion coefficient D„rr [13]. Their results can be used

to predict the torque (the radial transport of momentum),
assuming that the effective diffusion coefficient for rno-

mentum vT is proportional to the dye diffusion coefficient,
vT=cD„g, where c is an unknown prefactor. Hence the
angular momentum flux across the gap between the
cylinders is given by J=cD„rr[pa 0/(b —a)], where the
term in brackets is the momentum gradient across the

gap. The torque is given by the angular momentum flux

times the area of the inner cylinder, G =J&/pv L
=2rrrl cD„rrR/(I —rl) v, where, as before, we have divid-

ed by pv L to make the torque dimensionless. The torque
values predicted from the dye measurements (using
c=0.176) agree well with the direct measurements of
torque, as Fig. 3 illustrates. The dye measurements did
not have sufficient precision to reveal the transition at RT
that was found in the torque measurements. However, it
was noted [13] that the local exponent for the scaling of
the diffusion coefficient with R increased with increasing
R, just as we find for the torque.

With increasing Reynolds number there is a decrease
in the characteristic times for turbulent flow. We have
obtained a time scale from a local measurement, the
mean time between zero crossings of the wall shear stress
[16], and a time scale from the global torque measure-
ments; the latter time is given by the ratio of the shear
velocity to the boundary layer thickness [17]. Remark-
ably, these two quantities exhibit the same scaling behav-
ior, including strong curvature in the range 3.2x10

FIG. 4. The nondimensionuiized time scales tv/(b —a) ob-
tained from the zero crossings of the wall shear stress Auctua-
tions, r,' =r, —(r„,l, shown as (+), compared with times cal-
culated from the torque measurements (0) [17].

& R & 10, as Fig. 4 illustrates.
The observed behavior of the torque at large R is con-

sistent with previous observations of the turbulent drag in

wall-bounded shear flows such as pipe flow and flow over
a flat plate. Studies of such flows generally consider the
skin friction coefficient, cI =F/( 2 pU„,A), where F is the

drag force, U„,a maximal velocity, and A a characteristic
area. Wall-bounded shear flows have a mean velocity
that varies logarithmically with the distance from the
wall, except for a viscous sublayer very near the wall

[I8]. Assuming a logarithmic velocity profile in the
boundary layers for the turbulent Taylor vortex flow, and
matching the mean velocities at midgap, we obtain an
equation governing the skin friction that is analogous to
the Prandtl-von Karman law for pipe flow [IS], cI '

=AlogRcj' +B. Then, defining cy =G/R, we have

R/ G =AlogMG+B, which fits our data well (with
g =1.52 and B= —1.63 from a linear regression), as Fig.
5 (a) demonstrates.

The good fit of our data by a Prandtl-von Kar-
man-type equation leads us to make a direct comparison
of the skin friction for turbulent Taylor vortex flow with
that determined for pipe flow and flow over a flat plate
[Fig. 5(b)]. The similarity of the Reynolds number
dependence of these skin friction coefficients points to
similar fluid dynamics in all three cases, even though a
priori one might expect to have major differences be-
tween the closed Couette-Taylor system, where the tran-
sition to a fully turbulent flow at RT is nonhysteretic, and
the open wall-bounded shear flows such as pipe flow and
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3.5 4' Iog„s/I"

established a connection between this statement and the
scaling of the torque G-R . Deviations from this pre-
diction suggest that typical eddies follow a diAerent scal-
ing law also: hU-I '
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FIG. 5. (a) A fit of the torque data by a Prandtl-von
Karman-type law. (b) Skin friction coeIIIcients for turbulent
flows for the Couette-Taylor system (+), a pipe (0), and a tlat
plate (4), as a function of R/Rr, where Rr is taken to be the
transition Reynolds number in the presence of background dis-
turbances (Rr =1.3&&10 for Taylor vortex liow, 2. 3&& IO' for
pipe liow [18],and 3.2&& 10' for a flat plate [18]).

flow over a plate, where the transition to turbulence ex-
hibits large hysteresis. The local slope, which is a —2, in-
creases in each case continuously with R, with a never
exceeding a=1.87. This suggests that there may be a
single fluid-dynamical description of turbulent wall-

bounded shear flows, although some diA'erences can be
expected because of wall curvature and downstream pres-
sure gradient eA'ects.

Our early expectation was that the torque data would

be described by one or more power laws. Each power law

would cover its own range, and each could be explained

by a diA'erent type of physics dominating the behavior in

the boundary layer. What became apparent with succes-
sively more accurate torque measurements was that no

single power law describes the behavior over any range of
the data. At the highest Reynolds numbers, our largest
observed exponent, a =1.87, is still well below the Kolmo-
gorov limit, a =2. The starting assumption of the Kolmo-

gorov estimate is equivalent to a statement about typical
eddies in a turbulent flow: AU =e' I' '. Thus the theory
predicts cube-root singularities in the flow field. We have
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