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Finite-Time Singularities in the Axisymmetric Three-Dimension Euler Equations
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For pointlike singularities localized well away from the symmetry axis, axisymmetric flows with swirl

are arbitrarily well approximated by two-dimensional Boussinesq convection. An adaptive mesh simula-
tion of the latter equations was continued until the maximum three-dimensional vorticity showed a fac-
tor of 10 increase, allotting a reasonable determination of exponents, and elucidation of the mechanism
of blowup.
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Understanding whether smooth initial conditions to the
three-dimensional Euler equations develop singularities
(infinite velocity derivatives) in a finite time is an impor-
tant step in understanding high-Reynolds-number hydro-

dynamics. Focusing on singularities is a sharp way of
asking how excitation is passed onto small scales, a pro-
cess called "vortex stretching" in the turbulence litera-
ture. Finite-time blowup is essentially the condition that
the equations act nonlinearly. Exponential growth is

good evidence that the strain (essentially the derivative of
logarithm of vorticity) is coming from modes and a re-

gion of space remote from the vorticity in question. Fi-
nally, because plausible singularities are spatially local-
ized, adaptive mesh codes can be used to follow the col-

lapse to very small scales. The computational problem is

much simpler than for steady-state turbulence, where the
scaling regime cannot be attained with existing comput-
ers.

The simplest dimensional treatment of the Euler equa-
tions predicts a 1/(t* t) divergen—ce for velocity deriva-
tives. Current numerical simulations, however, show a
crossover to exponential growth with the most intense
vorticity organized into sheets, passively strained [1,2].
Whether the initial conditions were anomalous, the range
of scales inadequate, or the singularities "unstable" (i.e.,
think of rolling a marble into a volcano) is not known.

Grauer and Sideris [3] observed that axisymmetric
flows with swirl [the velocity is three dimensional but in-

dependent of p in cylindrical coordinates (r, p, z)l do not
exclude finite-time blowup, yet computationally look two
dimensional. For flows confined radially to a thin shell,
the 3D axisymmetric Euler equations are virtually
equivalent to the two-dimensional Boussinesq equations
without dissipation. It is these equations that we simulate
and in which we find a singularity. Second, the convec-
tion analogy dictates that the vorticity in axisymmetric
flows organizes into sheets (i.e., thermal plumes), and
that our singularity which occurs on the plume tip is gen-
eric. The maximum 3D vorticity diverges as (t —t)

The axisymmetric flow equations are written
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For a solution centered on r-ro, we find, under the sub-
stitutions —,
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Hence for )y~ &&rti we obtain the Boussinesq equations
[i.e., drop 2y/ro in comparison to 1 in (2b) and (2c)],
with nondimensionalized gravitational acceleration ro
The perturbation represented by y/ro is regular and di-

minishes in importance near the singularity time where
the relevant range of y is O((t* —t) ). For future refer-
ence the three-dimensional vorticity (to„,co&, td. ) scales as

The Boussinesq equations were simulated by mapping
the plane —~ & x,y & + onto the unit square 0( u, v ~ 1 by x =[a„+b„cos(tru)+c cos(2tru)]cot(tru)
(similarly for y, v), with the constants adjusted to main-
tain resolution. The equations were finite differenced
on a 256 uniform mesh in (u, v) with the Osher-
Chakravarty algorithm [4], the Poisson equation was in-

verted by cyclic reduction [5], and a Runge-Kutta algo-
rithm with step-size control was used for time advance-
ment. The incipient singularity was kept near u, v- —,',
where the resolution was highest, by a time-dependent
spatially uniform wind.

Since our singularity had comparable dimensions in x
and y, and the strain was generated locally, the task of
coordinate adjustment was greatly simplified. When we
had fewer than 12-18 grid points across the plume tip,
we stopped the integration and interpolated a mesh with
new constants a;,b;,c;. In the process, some vorticity was
pushed out to within a few mesh points of u, v=0, 1,
where it was truncated to preserve the boundary condi-
tions. The odd and even meshes were averaged to elimi-
nate a well-known and weak instability of centered dif-
ferences.
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Stat&sties were computed before and after the coord&-
nate adjustment. We can therefore say with confidence
that resolution errors in max(rd) and max(iVOi) were
held to (6% at all times. The loss in strain due to the
elimination of vorticity around "infinity" averaged —10%
per factor of 2 growth in iVOi. The ratio of the inner
scale, min(iVOi '), to those affected by the cutoff at
"infinity, " —50-100, is then a quantitative measure of
the locality of the strain. Since our differencing scheme
adds diffusion locally, proportional to resolution, our er-
rors tend to inhibit the singularity. In addition, we redid
a portion of our run with 384 resolution and examined
the convergence from coarser 128 and 192 meshes. We
again found that per factor of 2 growth in iVOi, finite
resolution led to a -7' underestimate. Further details
may be found in Ref. [6].

It is both technically convenient and conceptually neat,
without in any way contravening the above error esti-
mates, to continuously adjust scales. First note for arbi-
trary time-independent I, q that the Boussinesq equations
are invariant under [r=(x,y)]

8 const+i "8(r/l +",t/l),

tu —l 'to(r/l'+", t/l) .

(The scale factors on r, t, O preserve the effective gravita-
tional acceleration. ) Now imagine l depends on t,
a(t)= —BIl, and BIT=i ' defines T. Then the Bous-
sinesq equations can be written for new dependent vari-
ables 8 =l "(8—const) and D =ltu as functions of
R=r/I +" and T, with a(T) and ri as parameters as yet
undetermined.

In analogy with Ref. [7], a finite-time singularity with

l-(t * —t ) and T- —ln(t* —t ) exists if it is possible to
choose ri) 0 and constI )a(T) ) const2 & 0 such that
for iRi —I and all T the total variation in e, 0, and

their gradients is of order 1. It is not obvious, and is just
a restatement of our principal result, that all these condi-
tions can be met by adjusting only two parameters. Phys-

ically, g will turn out to be quite small and is used to
make the change in 0 across the region of large gradient
of order 1; a or l maintain the length scale of the singular
region at order 1. Since the precise numerical value of
this scale is immaterial, there is some arbitrariness in the
instantaneous value of a, but its average is well defined.

There is no reason for the dependence of 0 and 8 on T
to disappear and indeed it does not; our singularity con-
tinuously evolves in shape. Note that in the R, T vari-
ables there is nothing large or small and once a(T) is

selected, the numerical problem is equivalent to simulat-

ing any other partial differential equation with a finite,
and not terribly large, number of degrees of freedom.
Both discrete and continuous methods for adjusting coor-
dinates were implemented and agreed well ~

Figure 1 gives an overview of our data and shows how

the maximum three dimensiona-l vorticity diverges [N.B.,
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FIG. 1. The maximum temperature gradient (or 3D vortici-

ty) as a function of time for Eq. (2).

co„—iVOi» tII& by Eq. (3)]. The initial condition was
8=(1+0.2y)/(I+x +y ), to=0. For t (8.5, the tem-
perature evolves into a thermal plume of lateral extent
Bx—1 with a sharp gradient in 0 along its leading edge
which is otherwise smooth. The strain which corresponds
to stagnation Aow around the tip for x=0 stabilizes the
bubble cap and is roughly constant, so iVOi grows ex-
ponentially. The cap is always unstable for wavelengths
greater than or equal to the thickness cr, but the strain
suppresses the instabilities' amplitude, increases their
wavelength, and advects them away from the center. Fi-
nally, when the ratio of a to the radius of curvature
r, ,a/r, —10, time. dependence, which is always present
due to the edges of the plume and the increasing vortex
sheet strength, leads to large Kelvin-Helmholtz instabili-
ties on the side of the cap and Rayleigh-Taylor-like insta-
bilities near the x=0 symmetry axis (Fig. 2). We have
verified with a linearized analytic calculation that for the
background strain, tip curvature, and cap thickness we

calculate for t-8, instabilities are predicted to grow out
of a linear regime before they are advected off the cap

The true blowup begins at t -8.5. A smooth cap never

reforms, the point of maximum iVOi is always on or near
the symmetry line x =0, and the radius of curvature of
the iso-0 contour near the singularity is larger than but of
the order of the thickness (Fig. 3). Analytic estimates
[6] suggest that the rollup is not singular. (The mecha-
nism by which a cusp forms on a vortex sheet [10] is not

relevant here. ) The shape of the singular region is always

changing, with new instabilities being born and pushed
towards infinity in the rescaled coordinates as the code
maintains resolution around the incipient singularity.
Since the singularity develops so rapidly, the large, outer
scales are effectively frozen. A series of pictures analo-

gous to Fig. 3 for t ~ 9 would naturally telescope. At the
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FIG. 2. Contour plots of 0 and ro from Eq. (2), t =8.8, show-

ing the bubble cap destabilizing. The bubble is moving up-
wards, 8=0.2-1.0 in units of 0.2. The grid points are shown by
ticks, O~ x ~0.8, and the y range is 0.33. Note the "wrong"-
signed vorticity near x 0, indicative of a Rayleigh-Taylor
"finger, "and the rollups for larger x.

FlG. 3. Contour plot of 8 at t I0.077 with max()VH))
=1.9&10' and located on the x=O symmetry line, showing
that the singularity is well resolved. The coordinate range is
0(x &8.6x10 with y magnified 5X, and 8 varies from 0.9
to 0.4 as y increases. The cutoff near "infinity" begins to act on
8 for (x( ~ 1.4& l0

last time max(~V()~ ) —1.8& 10, the innermost mesh spac-

ing is -2& 10, and the outer scale beyond which the

vorticity is truncated (i.e., infinity) is —10 . There was

no impediment to further integration.
To infer exponents we replot our data as in Fig. 4 to

bring out the expected linear behavior [cf. Eq. (3) and
note that the strain should scale as ro]. There are no

fitting parameters, and the ripple in the data is real and
due to shape changes. The diverging strain, which equals
B,ln~V()(, is conclusive evidence that the growth in the
three-dimensional vorticity is not exponential. We can
also determine g =0.2 ~0.1 approximately from the total
variation in 0 across the region of large gradients. We
therefore have, in conformity with (3) near the singulari-

ty (v =velocity),

&=const+ r "B(r/r '+",T),

v=const+r'+"V(r/r +",T),
(4)

where r =(r*—r) and T- —ln(r). (Note that for the
inviscid Burgers equation the singular part of the velocity
also vanishes at r =0 although its gradient is infinite. )

In summary, a singularity develops in the center of the
leading edge of a thermal plurne, through formation of a
cusp by a Rayleigh-Taylor-like mechanism. Analytic es-
timates [6] show that the radius of curvature and thick-
ness must go to zero together if there is to be a singulari-
ty, as indeed we found. The local stretching (or elonga-
tion of constant 8 contours) diverges as 1/a by area
preservation.

Several salient conclusions for axisymmetric Euler flow
should be noted. The dynamics are local in (r,z); the
singularity is pointlike, and its shape is unsteady. The r, z
components of the three-dimensional vorticity diverge as

, while m&=co-r '. Taking account of the length
scaling in (4) we find f )su3o~ +'d x diverges for a ) g.
The largest velocity gradient is |)„v& and we obtain the
"conventional" vorticity strain relations [11,12], namely,
the vorticity parallel to the eigenvector of the intermedi-
ate (small) eigenvalue of the rate of strain matrix.

Although we are only able to track one and presumably
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FIG. 4. The inverse strain (dashed) and ~Ve) from Fig. l

plotted to appear linear [cf. Eq. (4)). The steps show when the
coordinates were adjusted and quantify the resolution errors.
The ripple is real and can be correlated with shape changes in

the solution. In particular, the bump in the strain for t-0.095
occurs because the location of the maximum moves to a pair of
points off the symmetry axis.
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the first singularity, other points on the bubble cap should
eventually blow up similarly. Viscosity v will terminate
the blowup [13] on a small scale —v +" + ". We
suspect that perturbations breaking the axisymmetry will

grow, leading to flows qualitatively like the paired vortex
tubes studied in Ref. [2]. While we now have good nu-

merical evidence that singular solutions to the 3D Euler
equations exist, it is of great interest to understand why
singularities have proved so elusive for nonsymmetric ini-
tial conditions.
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