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Unlimited Particle Acceleration by Waves in a Magnetic Field
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A general description is given to the unlimited acceleration of charged particles by a wave in the pres-
ence of a uniform magnetic field. The wave can have an arbitrary mixture of electrostatic and elec-
tromagnetic components and the propagation direction in the magnetic field is also arbitrary. Exact lim-

its on parameters for trapping and acceleration are derived. The probability of trapping in a gyration
period is also presented, and it is shown that a particle once trapped remains so and undergoes unlimited
acceleration.

PACS numbers: 41.75.-i, 52.20.Dq

The problem of the acceleration of charged particles by
the combination of a wave (electrostatic or electromag-
netic) and a uniform magnetic field has recently attracted
much attention [l-6]. In addition to its interest in basic
physics, its applications to particle accelerators [2,7],
plasma physics, and as a possible mechanism for cosmic
ray generation in pulsar environments should be noted
[gl.

There are two broad classes of acceleration mecha-
nisms. In the first, the particle is trapped by the wave, re-

quiring a phase velocity V =top/tcp & c; in the second, the
acceleration is stochastic [6], with V~ c. Here we con-
centrate on the first type, the coherent acceleration pro-
cess. Many authors have considered the case when the
wave propagates perpendicular to the magnetic field and
is either electrostatic or electromagnetic. The general
case where the wave propagates obliquely and has a mix-
ture of electrostatic and electromagnetic components is

the typical situation encountered when the wave propa-
gates in a plasma environment. Karimabadi and co-
workers [4] treated this case in a sequence of papers in

the limit where the static magnetic field is strong and the
wave field can be treated as a perturbation. In this limit
the effect of trapping into resonance is absent. Here we

show that the general case can be easily treated without
such an approximation, and one finds well-defined limits
in the parameters (angle of wave vector to magnetic field,
wave amplitude, and magnetic field) where acceleration
by wave trapping is possible. This kind of coherent ac-
celeration has been recently observed in numerical calcu-
lations [4].

The wave is described by E=Eoe ' ",where Eo
has a parallel component Eo ko=E[[ko, and the perpen-
dicular component is typically elliptically polarized. The
angle between ko and the constant magnetic field Bo is a.
We now perform a Lorentz transformation into the wave
frame (V (c), where all the fields are static, the perpen-
dicular components of the wave electric field vanish,
while E[[ is unchanged, the wave magnetic field and Bo
are modified, and a static uniform electric field yoVXBo

b2+ ypBp sin (a )+ cos(kx ) e3,
yo

E=Eisin(kx)e~ ypBpVsin(a)e2, (2)

where b1 and bz are the wave magnetic field amplitudes
in the laboratory frame, and k=(kp —top/c )'I. The
equations of motion are

d O z cos(kx )
(yv„) =csin(kx)+v, , ypOpsin(a)+

dh yo

0)
sin(kx),

yo

d
(yv, . ) = —ypOpsin(a)(V+ v„)

dt

D2—v, cos(kx)+ v Opcos(a).-,
yo

0)
sin(kx) —v,, Opcos(a) .

d
(yv-) =v„

dt "yo

(3)

(4)

(5)

Here v is the particle velocity in the wave frame, y=(1
—v /c ) ', e=qEi/m, Op=qBp/m, O~ 2=qb~ 2/m

The energy conservation equation mc dy/dt =qE. v

yields

d
dt

c y+ ypOpsin(a) Vy+ —cos(kx) =0,
k

(6)

while Eq. (5) gives

nl
yv-+ cos(kx)+ Opcos(a)y =0.

dt yok
(7)

emerges, where yp=(1 —V /c ) 'I . If the wave propa-
gates in the x direction, and Bp is in the x-z plane, we

have in the wave frame

bi
B=Bpcos(a)e1+ sin(kx)ez

yo
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One eliminates y from Eqs. (6) and (7) to find

d c e cos(kx)
y v + —01

dt ypVtan(a) Vtan(a) kyp

One expects v, , to approach a nonzero limit (the
asymptotic case v, , 0 will be considered in another pa-
per) since the acceleration is caused by the uniform elec-
tric field accelerating the particle in the y direction. Con-
sequently, as y ~, yv, , && Qp/ypk and Eq. (11) can be
integrated to yield

We are looking now for unlimited acceleration where y
grows and asymptotically y ~, so yv, ,

= —ypQpVsin(a)(1 —
A, )t+const, (i 2)

v v p=c'/ypVtan(a). where again in the asymptotic limit the constant can be
ignored. In the same limit Eq. (7) gives (v =v--. p)

tan(a) ) c/ypV. (io)

Introduce now the dimension less parameter A,
= v, p/c

=c/ypVtan(a) and write (4) in the asymptotic case
(c, =v-p(c, v, «V)

d Qp
yv„. + sin(kx) = —ypQpVsin(a)(1 —ij, ) . (11)

d1 ypIc

Since v-p (c, we get our first condition for unlimited ac-
celeration [4]

c dy
Qpyp V sin (a) dt

Substituting this into (12) gives

y =
[ypQp sin(a) V/c] (1 —X') 't't,

leading to unlimited acceleration and

ti, ~ ti,p= —c(1 —g )

(i 3)

(i 4)

(is)

2 1/2(yv„) =@sin(kx) —c(1 —X ) t ypQpsin(a)+ cos(kx)
02
yp

CQlk
sin(kx),

yo
(i 6)

which one rewrites as

d (yv„)+A sin(kx+y)+c(1 —X ) 't ypQpsin(a) =0,
Q i =0, and the condition is

Q2 & yp Qpsin(a) . (22)

(i7)

where

A =(I/yp)[(cQik, —ypE) +c Q2(1 —k')]'t' (l8)

and

From Eq. (1) this is also the condition for B, having

zeros in the wave frame. The physical meaning is in-

teresting; the particle is trapped around a neutral layer of
B- =0.

(3) Transverse linearly polarized wave, with magnetic
field in the y direction; t. =0, 02=0, with the condition

v =sin '[cQ2(1 —k') 't'/Ayp] . Q i & yp Qpsin(a) [yp V tan (a)/c —
1 l " . (23)

Equation (17) has the same structure as the one studied

previously by Neishtadt and co-workers [S] and describes
a particle with growing eII'ective mass (y) sliding on an

incline with a periodic potential. The particle is trapped

by the wave if v„executes small oscillations, which re-

quires

A & c(1 —
A, ') 't'ypQpsin(a) . (2o)

This is the second condition on parameters for unlimited
acceleration with trapping by the wave. Let us look now

at specific examples.
(1) The wave is purely electrostatic, Q i

= Q2 =0. This
leads to

e & c(l —X') 't'Qpypsin(a) (2i)

together with Eq. (10).
(2) The wave is purely transverse, linearly polarized

with wave magnetic field in the direction. Now r. =0,

While the first two modes accelerate particles when

kJ Bp [in fact, with sin(a) =1 one recovers the results

formerly available in the literature], the third mode ex-

cludes trapping if a =tr/2, tan(a)
It still remains to demonstrate that if the inequalities

(10) and (20) are satisfied an initially untrapped particle
will get trapped with a high probability. The Hamiltoni-

an describing the asymptotic motion of Eq. (17) is

H =p'/2y(t)+ y(x),

y(x) = —(A/k) [cos(kx+v ) —cos(kx„+v )] (24)

+c(1 —ij. ') 't'ypQpsin(a)(x —x.),

~here x, is chosen in such a way that the potential is zero
on the separatrix, and x is the saddle point as shown in

Fig. 1. As time increases y grows and so does the area

enclosed by the separatrix as p„~—Jy. At this point we

assume the motion is adiabatic in the x-p plane. The
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=2f„"'4—2ytbdx, where p, is the momentum on the
separatrix and

S= dx =+„„p., dx .
4—2IIIy

So Hb =2H, =S, and from Eq. (24)

(28)

H, =H x, + 2x H(x,—) =c(l —X') 't'ypnpsin(a) 27K

(29)

This leads to the general equation for the trapping proba-
bility,

X-X P =Sk/2trc(l —
1I. ) 't ypQpsin(a) . (3O)

FIG. I. Phase space of the Hamiltonian equation (24). Solid
lines correspond to time and y frozen; dashed lines, to y evolv-

ing in time.

Since S grows like Jy, and y grows linearly with time as
given in Eq. (14), it follows that S =SypApsin(a) V/2cy,
and therefore

Sk V (f4—2IIIdx)k V

4trcy c 4trc j& c
condition for adiabatic motion is [5] (31)

(Ak)' »ypOpV(l —
A, )'t sin(a)/cy't .

This equation has general validity, i.e., if the wave is not
sinusoidal but deformed due to nonlinear effects, it is still
valid. A relativistic particle (y»1) far from resonance
with the wave moves along a Larmor orbit perturbed by a
high-frequency oscillation caused by the wave and enters
the resonance zone. Since S)0, capture is assured over
many gyration periods, with the time T =(POp)

In the laboratory frame, since S is a Lorentz invariant,
k = ypkp, and y1.„6= ypy~„„„P=SkpV/4trc y1',.g =Scop/4' yi'„. p. It is interesting to note that a slow particle
(y= 1 ) has a higher probability to get trapped than a fast
one with y)&1.
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This condition clearly holds at large values of y; so a par-
ticle trapped at any time remains permanently trapped
and undergoes unlimited acceleration.

Since the general equations describing the motion of
the particle [Eqs. (3)-(5)] are nonintegrable, an un-

trapped particle can be expected to move chaotically in

phase space until trapped (see Refs. [4,6]). Computa-
tional solutions of the exact equations confirm this as-
sumption.

We calculate now the probability that a particle gets
trapped in a given time. As y slowly increases in time, a
particle starting at some point b will spiral into point a as
shown in the figure. So all particles starting on line seg-
ment a-b will spiral into the separatrix and get trapped.
A particle midway between a and b, at point c, spirals
into d.

The trapping probability is calculated by taking the ra-
tio of particle fluxes that pass between a and b to those
that pass between a and e. The flux of phase space area
crossing a line spanned by points 1 and 2 is [9] "' Permanent address: Space Research Institute, Prof-

soyuznaya 84/32, Moscow 117810,U.S.S.R.
Permanent address: Department of Physics, Stevens In-
stitute of Technology, Hoboken, NJ 07030.
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